RonPub

Loading...

RonPub Banner

RonPub -- Research Online Publishing

RonPub (Research online Publishing) is an academic publisher of online, open access, peer-reviewed journals.  RonPub aims to provide a platform for researchers, developers, educators, and technical managers to share and exchange their research results worldwide.

RonPub Is Open Access:

RonPub publishes all of its journals under the open access model, defined under BudapestBerlin, and Bethesda open access declarations:

  • All articles published by RonPub is fully open access and online available to readers free of charge.  
  • All open access articles are distributed under  Creative Commons Attribution License,  which permits unrestricted use, distribution and reproduction free of charge in any medium, provided that the original work is properly cited. 
  • Authors retain all copyright to their work.
  • Authors may also publish the publisher's version of their paper on any repository or website. 

RonPub Is Cost-Effective:

To be able to provide open access journals, RonPub defray publishing cost by charging a one-time publication fee for each accepted article. One of RonPub objectives is providing a fast and high-quality but lower-cost publishing service. In order to ensure that the fee is never a barrier to publication, RonPub offers a fee waiver for authors who do not have funds to cover publication fees. We also offer a partial fee waiver for editors and reviewers of RonPub as as reward for their work. See the respective Journal webpage for the concrete publication fee.

RonPub Publication Criteria

What we are most concerned about is the quality, not quantity, of publications. We only publish high-quality scholarly papers. Publication Criteria describes the criteria that should be met for a contribution to be acceptable for publication in RonPub journals.

RonPub Publication Ethics Statement:

In order to ensure the publishing quality and the reputation of the publisher, it is important that all parties involved in the act of publishing adhere to the standards of the publishing ethical behaviour. To verify the originality of submissions, we use Plagiarism Detection Tools, like Anti-Plagiarism, PaperRater, Viper, to check the content of manuscripts submitted to our journals against existing publications.

RonPub follows the Code of Conduct of the Committee on Publication Ethics (COPE), and deals with the cases of misconduct according to the COPE Flowcharts

Long-Term Preservation in the German National Library

Our publications are archived and permanently-preserved in the German National Library. The publications, which are archived in the German National Library, are not only long-term preserved but also accessible in the future, because the German National Library ensures that digital data saved in the old formats can be viewed and used on current computer systems in the same way they were on the original systems which are long obsolete.

Where is RonPub?

RonPub is a registered corporation in Lübeck, Germany. Lübeck is a beautiful coastal city, owing wonderful sea resorts and sandy beaches as well as good restaurants. It is located in northern Germany and is 60 kilometer away from Hamburg.

OJIOT Cover
Open Journal of Internet of Things (OJIOT)
OJIOT, an open access and peer-reviewed online journal, publishes original and creative research results on the internet of things. OJIOT distributes its articles under the open access model. All articles of OJIOT are fully open access and online available to readers free of charge. There is no restriction on the length of the papers. Accepted manuscripts are published online immediately.
Publisher: RonPub UG (haftungsbeschränkt), Lübeck, Germany
Contact: OJIOT Editorial Office
ISSN: 2364-7108
Call for Papers: txtUTF-8 txtASCII pdf
OJIOT Cover
Open Journal of Internet of Things (OJIOT)
OJIOT, an open access and peer-reviewed online journal, publishes original and creative research results on the internet of things. OJIOT distributes its articles under the open access model. All articles of OJIOT are fully open access and online available to readers free of charge. There is no restriction on the length of the papers. Accepted manuscripts are published online immediately.
Publisher: RonPub UG (haftungsbeschränkt), Lübeck, Germany
Contact: OJIOT Editorial Office
ISSN: 2364-7108
Call for Papers: txtUTF-8 txtASCII pdf

Aims & Scope

The current internet with its applications like web browsing, emails, social networks and online games is human oriented. It is predicted that real objects will have a much bigger impact in the future internet. Any real object will be accessible and manageable via the internet, and real objects will automatically work in cooperation. This new vision is called as the internet of things (IoT). Realizing this vision offers a new dimension of real world services to the user.

OJIOT publishes regular research papers, short communications, reviews and visionary papers in all aspects of the internet of things. There is no restriction on the length of the papers. 

Short communications reports novel research ideas. The work represented should be technically sound and significantly advancing the state of the art. Short communications also include exploratory studies and methodological articles.

Regular research papers are full original findings with adequate experimental research. They make substantial theoretical and empirical contributions to the research field.  Research papers should be written in as concise a style as possible.

Research reviews are insightful and accessible overview of a certain field of research. They conceptualize research issues, synthesize existing findings and advance the understanding of the field. They may also suggest new research issues and directions.

Visionary papers identify new research issues and future research directions, and describe new research visions 

Topics relevant to this journal include, but are NOT limited to:

  • System architectures for IoT, e.g. 
    • things-centric, 
    • data-centric, 
    • event-centric, and
    • service-centric
  • IoT applications, including e.g.
    • smart homes/offices/cities, 
    • waste management, 
    • continuous care, 
    • emergency response, and 
    • intelligent shopping
  • Nano Technology, including e.g.
    • Nano Networks
    • Nano communication
    • Nano applications
    • Nano computing
    • Internet of Nano Tings
  • IoT programming toolkits and frameworks
  • IoT prototypes and evaluation test-beds
  • Privacy and security
  • IoT management and interoperability
  • Management of IoT streams
  • Enabling technologies and standards for the IoT
  • Spatial and temporal reasoning for IoT
  • Sustainability of IoT platforms, e.g. business models for deployment and maintenance
  • Societal challenges and IoT, e.g. urban planning and decision making tools
  • Ownership of data in IoT scenarios

Author Guidelines

Publication Criteria

Publication Criteria provides important information for authors to prepare their manuscripts with a high possibility of being accepted.

Manuscript Preparation

Please prepare your manuscripts using the manuscript template of the journal. It is available for download as word doc docx and latex version zip. The template describes the format and structure of manuscripts and other necessary information for preparing manuscripts. Manuscripts should be written in English. There is no restriction on the length of manuscripts.

Submission

Authors submit their manuscripts following the information on the submit pageAuthors first submit their manuscripts in PDF format. Once a manuscript is accepted, the author then submits the revised manuscript as a PDF file and a word file or latex folder (with all the material necessary to generate the PDF file). The work described in the submitted manuscript must be previously unpublished; it is not under consideration for publication anywhere else. 

Authors are welcome to suggest qualified reviewers for their papers, but this is not mandatory. If the author wants to do so, please provide the name, affiliations and e-mail addresses for all suggested reviewers.

Manuscript Status

After submission of manuscripts, authors will receive an email to confirm receipt of manuscripts. Subsequent enquiries concerning paper progress should be sent to the email address of the journal.

Review Procedure

OJIOT is committed to enforcing a rigorous peer-review process. All manuscripts submitted for publication in OJIOT are strictly and thoroughly peer-reviewed. When a manuscript is submitted, the editor-in-chief assigns it to an appropriate editor who will be in charge of the review process of the manuscript. The editor first suggests potential reviewers and then organizes the peer-reviewing herself/himself or entrusts it to the editor office. For each manuscript, typically three review reports will be collected. The editor and the editor-in-chief evaluate the manuscript itself and the review reports and make an accept/revision/reject decision. Authors will be informed with the decision and reviewing results within 6-8 weeks on average after the manuscript submission. In the case of revision, authors are required to perform an adequate revision to address the concerns from evaluation reports. A second round of peer-review will be performed if necessary.

Accepted manuscripts are published online immediately.

Copyrights

Authors publishing with RonPub open journals retain the copyright to their work. 

All articles published by RonPub is fully open access and online available to readers free of charge.  RonPub publishes all open access articles under the Creative Commons Attribution License,  which permits unrestricted use, distribution and reproduction freely, provided that the original work is properly cited.

Digital Archiving Policy

Our publications have been archived and permanently-preserved in the German National Library. The publications, which are archived in the German National Library, are not only long-term preserved but also accessible in the future, because the German National Library ensures that digital data saved in the old formats can be viewed and used on current computer systems in the same way they were on the original systems which are long obsolete. Further measures will be taken if necessary. Furthermore, we also encourage our authors to self-archive their articles published on the website of RonPub.

Publication Ethics Statement

In order to ensure the publishing quality and the reputation of the journal, it is important that all parties involved in the act of publishing adhere to the standards of the publishing ethical behaviour. To verify the originality of submissions, we use Plagiarism Detection Tools, like Anti-Plagiarism, PaperRater, Viper, to check the content of manuscripts submitted to our journals against existing publications.

Our journal follows the Code of Conduct of the Committee on Publication Ethics (COPE), and deals with the cases of misconduct according to the COPE Flowcharts

Very Large Internet of Things (VLIoT-2019)

Very Large Internet of Things (VLIoT 2019) is an international workshop in conjunction with the 2019 VLDB Conference in Los Angeles, USA. The proceedings of VLIoT@VLDB 2019 are published in the Open Journal of Internet of Things (OJIOT) as special issue.

Aims

An increasing number of real-world objects are becoming accessible and manageable through the Internet. According to CISCO, the number of these devices will reach 50 billion by 2020, forming a very large Internet of Things (VLIoT). This massive number of "smart" objects will cooperate with each other, have their own metadata, and may continuously produce new data (in form of events, sensor data, or actuator states). Data management will be a major challenge in the very large Internet of Things. Hence, efficient IoT infrastructure and technologies must be developed to handle masses of IoT data with high performance. This will include: new techniques to filter and store relevant data; efficient replication approaches for objects with constrained resources in order to increase availability and durability; new protocols for voting about decisions among objects; and smooth integration of heterogeneous objects. The goal of this workshop is to bring together academic researchers and industry practitioners working in the field of IoT and to allow them to report and exchange their findings addressing these challenges. This workshop also intends to discuss other closely-related technologies such as Nanotechnology, Fog-, Edge-, and Dew-Computing for IoT. The ideas of Fog, Edge and Dew Computing may indeed solve or attenuate the problems of a very large Internet of Things (w.r.t. performance, energy-efficiency, as well as security and privacy aspects).

Types of Papers

We are interested in contributions describing original ideas, promising new concepts, and practical experience. In particular, we solicit papers of different types:

  • Research Papers proposing new approaches, theories or techniques related to Internet of Things, including new data structures, algorithms, whole systems, and frameworks. They should make substantial theoretical and empirical contributions to the research field.
  • Experiments and Analysis Papers focusing on the experimental evaluation of existing approaches including data structures and algorithms for Internet of Things and bring new insights through the analysis of these experiments. Results of experiments and analysis papers can be, for example, showing benefits of well-known approaches in new settings and environments, opening new research problems by demonstrating unexpected behavior or phenomena, or comparing a set of traditional approaches in an experimental survey.
  • Application Papers reporting practical experiences on Internet of Things applications. Application papers might describe specific application domains in the IoT such as smart homes/offices/cities, continuous health care, waste management, emergency response, intelligent response, and Industry 4.0.
  • Vision Papers identifying emerging or future research issues and directions, and describing new research visions in the IoT area that may have a great impact on our society.

Topics of Interest

We expect original, high-quality papers, including but NOT limited to the following topics:

  • Semantic IoT
  • Privacy-by-design and security-by-design in IoT
  • System architectures for IoT, including
    • things-centric
    • data-centric
    • event-centric
    • service-centric
  • IoT applications, including:
    • smart homes/offices/cities
    • waste management
    • health care
    • emergency response
    • intelligent shopping
  • Nano Technology, including:
    • Nano Networks
    • Nano communication
    • Nano applications
    • Nano computing
    • Internet of Nano Things
  • IoT programming toolkits and frameworks
  • IoT prototypes and evaluation test-beds
  • IoT data mining and analytics
  • IoT management and interoperability
  • Management of IoT streams
  • Enabling technologies and standards for the IoT
  • Spatial and temporal reasoning for IoT
  • Sustainability of IoT platforms, e.g. business models for deployment and maintenance
  • Societal challenges and IoT, e.g. urban planning and decision making tools
  • Ownership of data in IoT scenarios
  • Fog, Edge and Dew Computing for IoT
  • IoT benchmarks and performance measurement
  • Indexing and search in IoT environments
  • IoT transactions, concurrency control and recovery
  • Hardware accelerators and energy savers for IoT applications and core infrastructure
  • IoT discovery of devices, services and data

Guest Editors

  • Markus Endler, PUC Rio, Brasil
  • Sven Groppe, University of Lübeck, Germany

Important Dates

  • Submission Deadline: 25-03-2019
  • Author Notification: 31-05-2019
Articles (total number of downloads: 38748, total number of citations: 36)tex xml rdf rss

 Open Access 

Editorial of the 2019 Workshop on Very Large Internet of Things (VLIoT)

Markus Endler, Sven Groppe

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 1-5, 2019, Downloads: 3193

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919330960165487 | GNL-LP: 1195986149 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: We are proud of presenting the outcome of this third edition of the "Very Large Internet of Things" (VLIoT) workshop, which was held in Los Angeles (USA) in August 2019, in conjunction with the 45th International Conference on Very Large Data Bases (VLDB). Following the success path of the two previous workshop editions - in Munich (2017) and in Rio de Janeiro (2018) - VLIoT 2019 kept its tradition to be a vivid and high-quality technical forum for researchers and practitioners working with Internet of Things to share their experiences, visions and latest findings, most of them regarding the design, implementation, deployment and management of IoT systems at very large and scale. This editorial of the special issue introduces and introduces all papers presented at the workshop.

BibTex:

    @Article{OJIOT_2019v5i1n01e_VLIoT2019,
        title     = {Editorial of the 2019 Workshop on Very Large Internet of Things (VLIoT)},
        author    = {Markus Endler and
                     Sven Groppe},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {1--5},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919330960165487},
        urn       = {urn:nbn:de:101:1-2019092919330960165487},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {We are proud of presenting the outcome of this third edition of the "Very Large Internet of Things" (VLIoT) workshop, which was held in Los Angeles (USA) in August 2019, in conjunction with the 45th International Conference on Very Large Data Bases (VLDB). Following the success path of the two previous workshop editions - in Munich (2017) and in Rio de Janeiro (2018) - VLIoT 2019 kept its tradition to be a vivid and high-quality technical forum for researchers and practitioners working with Internet of Things to share their experiences, visions and latest findings, most of them regarding the design, implementation, deployment and management of IoT systems at very large and scale. This editorial of the special issue introduces and introduces all papers presented at the workshop.}
    }

 Open Access 

Energy Savings in Very Large Cloud-IoT Systems

Yi Xu, Sumi Helal, Choonhwa Lee, Ahmed Khaled

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 6-28, 2019, Downloads: 2531, Citations: 1

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919332044579216 | GNL-LP: 1195986165 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Opposite to the original cloudlet approach in which an edge is utilized to bring the cloud and its benefits closer to the applications, in cloud- and edge-connected IoT systems where the applications are deployed and run in the cloud, we exploit the edge somewhat differently, either by bringing the physical world and its data up closer to the cloud or by caching parts of the applications down closer to the physical world. Aggressive optimizations seeking substantial IoT energy savings are needed to maintain the scalability of large-scale IoT deployments and to stay within cloud cost constraints (avoiding costly elasticity when working with a budget limit). In this paper, we present a novel optimization approach that relies on the simple principle of minimizing all movements: movements of data from the IoT up to the Edge and Cloud, and movements of application fragments from the cloud down to the edge and the IoT itself. Our approach is novel in that it involves and utilizes the dynamic characteristics and variability of both the data and applications simultaneously. Another novelty of our approach is the definition and use of "sentience-efficiency" as a precursor to "energy-efficiency" for achieving truly aggressive savings in energy. We present our bi-directional optimization approach and its implementation in terms of algorithms within an architecture we name the cloud-edge-beneath architecture (CEB). We present a performance evaluation study to measure the impact of our optimization approach on energy saving.

BibTex:

    @Article{OJIOT_2019v5i1n02_YiXu,
        title     = {Energy Savings in Very Large Cloud-IoT Systems},
        author    = {Yi Xu and
                     Sumi Helal and
                     Choonhwa Lee and
                     Ahmed Khaled},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {6--28},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919332044579216},
        urn       = {urn:nbn:de:101:1-2019092919332044579216},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Opposite to the original cloudlet approach in which an edge is utilized to bring the cloud and its benefits closer to the applications, in cloud- and edge-connected IoT systems where the applications are deployed and run in the cloud, we exploit the edge somewhat differently, either by bringing the physical world and its data up closer to the cloud or by caching parts of the applications down closer to the physical world. Aggressive optimizations seeking substantial IoT energy savings are needed to maintain the scalability of large-scale IoT deployments and to stay within cloud cost constraints (avoiding costly elasticity when working with a budget limit). In this paper, we present a novel optimization approach that relies on the simple principle of minimizing all movements: movements of data from the IoT up to the Edge and Cloud, and movements of application fragments from the cloud down to the edge and the IoT itself. Our approach is novel in that it involves and utilizes the dynamic characteristics and variability of both the data and applications simultaneously. Another novelty of our approach is the definition and use of "sentience-efficiency" as a precursor to "energy-efficiency" for achieving truly aggressive savings in energy. We present our bi-directional optimization approach and its implementation in terms of algorithms within an architecture we name the cloud-edge-beneath architecture (CEB). We present a performance evaluation study to measure the impact of our optimization approach on energy saving.}
    }

 Open Access 

Data-Centric Resource Management in Edge-Cloud Systems for the IoT

Igor Leão dos Santos, Flávia C. Delicato, Paulo F. Pires, Marcelo Pitanga Alves, Ana Oliveira, Tiago Salviano Calmon

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 29-46, 2019, Downloads: 2520, Citations: 4

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919334248197873 | GNL-LP: 119598619X | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: A major challenge in emergent scenarios such as the Cloud-assisted Internet of Things is efficiently managing the resources involved in the system while meeting requirements of applications. From the acquisition of physical data to its transformation into valuable services or information, several steps must be performed, involving the various players in such a complex ecosystem. Support for decentralized data processing on IoT devices and other devices near the edge of the network, in combination with the benefits of cloud technologies has been identified as a promising approach to reduce communication overhead, thus reducing delay for time sensitive IoT applications. The interplay of IoT, edge and cloud to achieve the final goal of producing useful information and value-added services to end user gives rise to a management problem that needs to be wisely tackled. The goal of this work is to propose a novel resource management framework for edge-cloud systems that supports heterogeneity of both devices and application requirements. The framework aims to promote the efficient usage of the system resources while leveraging the Edge Computing features, to meet the low latency requirements of emergent IoT applications. The proposed framework encompasses (i) a lightweight and data-centric virtualization model for edge devices, (ii) a set of components responsible for the resource management and the provisioning of services from the virtualized edge-cloud resources.

BibTex:

    @Article{OJIOT_2019v5i1n03_Santos,
        title     = {Data-Centric Resource Management in Edge-Cloud Systems for the IoT},
        author    = {Igor Le\~{a}o dos Santos and
                     Fl\'{a}via C. Delicato and
                     Paulo F. Pires and
                     Marcelo Pitanga Alves and
                     Ana Oliveira and
                     Tiago Salviano Calmon},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {29--46},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919334248197873},
        urn       = {urn:nbn:de:101:1-2019092919334248197873},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {A major challenge in emergent scenarios such as the Cloud-assisted Internet of Things is efficiently managing the resources involved in the system while meeting requirements of applications. From the acquisition of physical data to its transformation into valuable services or information, several steps must be performed, involving the various players in such a complex ecosystem. Support for decentralized data processing on IoT devices and other devices near the edge of the network, in combination with the benefits of cloud technologies has been identified as a promising approach to reduce communication overhead, thus reducing delay for time sensitive IoT applications. The interplay of IoT, edge and cloud to achieve the final goal of producing useful information and value-added services to end user gives rise to a management problem that needs to be wisely tackled. The goal of this work is to propose a novel resource management framework for edge-cloud systems that supports heterogeneity of both devices and application requirements. The framework aims to promote the efficient usage of the system resources while leveraging the Edge Computing features, to meet the low latency requirements of emergent IoT applications. The proposed framework encompasses (i) a lightweight and data-centric virtualization model for edge devices, (ii) a set of components responsible for the resource management and the provisioning of services from the virtualized edge-cloud resources.}
    }

 Open Access 

Online Replication Strategies for Distributed Data Stores

Niklas Semmler, Georgios Smaragdakis, Anja Feldmann

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 47-57, 2019, Downloads: 2895, Citations: 1

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919335387371884 | GNL-LP: 1195986211 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: The rate at which data is produced at the network edge, e.g., collected from sensors and Internet of Things (IoT) devices, will soon exceed the storage and processing capabilities of a single system and the capacity of the network. Thus, data will need to be collected and preprocessed in distributed data stores - as part of a distributed database - at the network edge. Yet, even in this setup, the transfer of query results will incur prohibitive costs. To further reduce the data transfers, patterns in the workloads must be exploited. Particularly in IoT scenarios, we expect data access to be highly skewed. Most data will be store-only, while a fraction will be popular. Here, the replication of popular, raw data, as opposed to the shipment of partially redundant query results, can reduce the volume of data transfers over the network. In this paper, we design online strategies to decide between replicating data from data stores or forwarding the queries and retrieving their results. Our insight is that by profiling access patterns of the data we can lower the data transfer cost and the corresponding response times. We evaluate the benefit of our strategies using two real-world datasets.

BibTex:

    @Article{OJIOT_2019v5i1n04_Semmler,
        title     = {Online Replication Strategies for Distributed Data Stores},
        author    = {Niklas Semmler and
                     Georgios Smaragdakis and
                     Anja Feldmann},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {47--57},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919335387371884},
        urn       = {urn:nbn:de:101:1-2019092919335387371884},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {The rate at which data is produced at the network edge, e.g., collected from sensors and Internet of Things (IoT) devices, will soon exceed the storage and processing capabilities of a single system and the capacity of the network. Thus, data will need to be collected and preprocessed in distributed data stores - as part of a distributed database - at the network edge. Yet, even in this setup, the transfer of query results will incur prohibitive costs. To further reduce the data transfers, patterns in the workloads must be exploited. Particularly in IoT scenarios, we expect data access to be highly skewed. Most data will be store-only, while a fraction will be popular. Here, the replication of popular, raw data, as opposed to the shipment of partially redundant query results, can reduce the volume of data transfers over the network. In this paper, we design online strategies to decide between replicating data from data stores or forwarding the queries and retrieving their results. Our insight is that by profiling access patterns of the data we can lower the data transfer cost and the corresponding response times. We evaluate the benefit of our strategies using two real-world datasets.}
    }

 Open Access 

Understanding the Performance of Software Defined Wireless Sensor Networks under Denial of Service Attack

Gustavo A. Nunez Segura, Cintia B. Margi, Arsenia Chorti

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 58-68, 2019, Downloads: 3337, Citations: 4

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919340426551900 | GNL-LP: 1195986238 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Wireless sensor networks (WSN) are formed from restricted devices and are known to be vulnerable to denial of service (DoS) security attacks. In parallel, software-defined networking has been identified as a solution for many WSN challenges with respect to flexibility and reuse. Conversely, the SDN control plane centralization may bring about new security threats and vulnerabilities. In this work, we perform a traffic analysis of software-defined WSN (SDWSN) in order to gain understanding of the network's performance when it is under certain types of DoS attacks. In particular, we consider three different DoS scenarios of increasing aggressiveness: (i) false flow requests DoS, (ii) false data flow forwarding DoS, and, (iii) false neighbor information passing DoS. Our simulation results for the latter two types of attack showed significant changes both in the average value and the variance of the delivery rate and the overall overhead. These results demonstrate that it is possible to identify when a SDWSN is under a particular type of DoS, by monitoring the respective quantities.

BibTex:

    @Article{OJIOT_2019v5i1n05_Segura,
        title     = {Understanding the Performance of Software Defined Wireless Sensor Networks under Denial of Service Attack},
        author    = {Gustavo A. Nunez Segura and
                     Cintia B. Margi and
                     Arsenia Chorti},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {58--68},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919340426551900},
        urn       = {urn:nbn:de:101:1-2019092919340426551900},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Wireless sensor networks (WSN) are formed from restricted devices and are known to be vulnerable to denial of service (DoS) security attacks. In parallel, software-defined networking has been identified as a solution for many WSN challenges with respect to flexibility and reuse. Conversely, the SDN control plane centralization may bring about new security threats and vulnerabilities. In this work, we perform a traffic analysis of software-defined WSN (SDWSN) in order to gain understanding of the network's performance when it is under certain types of DoS attacks. In particular, we consider three different DoS scenarios of increasing aggressiveness: (i) false flow requests DoS, (ii) false data flow forwarding DoS, and, (iii) false neighbor information passing DoS. Our simulation results for the latter two types of attack showed significant changes both in the average value and the variance of the delivery rate and the overall overhead. These results demonstrate that it is possible to identify when a SDWSN is under a particular type of DoS, by monitoring the respective quantities.}
    }

 Open Access 

IoT Data Imputation with Incremental Multiple Linear Regression

Tao Peng, Sana Sellami, Omar Boucelma

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 69-79, 2019, Downloads: 3369, Citations: 4

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919341561784402 | GNL-LP: 1195986254 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: In this paper, we address the problem related to missing data imputation in the IoT domain. More specifically, we propose an Incremental Space-Time-based model (ISTM) for repairing missing values in IoT real-time data streams. ISTM is based on Incremental Multiple Linear Regression, which processes data as follows: Upon data arrival, ISTM updates the model after reading again the intermediary data matrix instead of accessing all historical information. If a missing value is detected, ISTM will provide an estimation for the missing value based on nearly historical data and the observations of neighboring sensors of the default one. Experiments conducted with real traffic data show the performance of ISTM in comparison with known techniques.

BibTex:

    @Article{OJIOT_2019v5i1n06_TaoPeng,
        title     = {IoT Data Imputation with Incremental Multiple Linear Regression},
        author    = {Tao Peng and
                     Sana Sellami and
                     Omar Boucelma},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {69--79},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919341561784402},
        urn       = {urn:nbn:de:101:1-2019092919341561784402},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {In this paper, we address the problem related to missing data imputation in the IoT domain. More specifically, we propose an Incremental Space-Time-based model (ISTM) for repairing missing values in IoT real-time data streams. ISTM is based on Incremental Multiple Linear Regression, which processes data as follows: Upon data arrival, ISTM updates the model after reading again the intermediary data matrix instead of accessing all historical information. If a missing value is detected, ISTM will provide an estimation for the missing value based on nearly historical data and the observations of neighboring sensors of the default one. Experiments conducted with real traffic data show the performance of ISTM in comparison with known techniques.}
    }

 Open Access 

Towards a Large Scale IoT through Partnership, Incentive, and Services: A Vision, Architecture, and Future Directions

Gowri Sankar Ramachandran, Bhaskar Krishnamachari

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 80-92, 2019, Downloads: 3143, Citations: 6

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919345869785889 | GNL-LP: 1195986327 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: Internet of Things applications has been deployed and managed in a small to a medium scale deployments in industries and small segments of cities in the last decade. These real-world deployments not only helped the researchers and application developers to create protocols, standards, and frameworks but also helped them understand the challenges associated with the maintenance and management of IoT deployments in all kinds of operational environments. Despite the technological advancements and the deployment experiences, the technology failed to create a notable momentum towards large scale IoT applications involving thousands of IoT devices. We argue the reasons behind the lack of large scale deployments and the limitations of contemporary IoT deployment model. In addition, we present an approach involving multiple stakeholders as a means to scale IoT applications to hundreds of devices. Besides, we argue that the partnership, incentive mechanisms, privacy, and security frameworks are the critical factors for large scale IoT deployments of the future.

BibTex:

    @Article{OJIOT_2019v5i1n07_Ramachandran,
        title     = {Towards a Large Scale IoT through Partnership, Incentive, and Services: A Vision, Architecture, and Future Directions},
        author    = {Gowri Sankar Ramachandran and
                     Bhaskar Krishnamachari},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {80--92},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919345869785889},
        urn       = {urn:nbn:de:101:1-2019092919345869785889},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {Internet of Things applications has been deployed and managed in a small to a medium scale deployments in industries and small segments of cities in the last decade. These real-world deployments not only helped the researchers and application developers to create protocols, standards, and frameworks but also helped them understand the challenges associated with the maintenance and management of IoT deployments in all kinds of operational environments. Despite the technological advancements and the deployment experiences, the technology failed to create a notable momentum towards large scale IoT applications involving thousands of IoT devices. We argue the reasons behind the lack of large scale deployments and the limitations of contemporary IoT deployment model. In addition, we present an approach involving multiple stakeholders as a means to scale IoT applications to hundreds of devices. Besides, we argue that the partnership, incentive mechanisms, privacy, and security frameworks are the critical factors for large scale IoT deployments of the future.}
    }

 Open Access 

Distributed Data-Gathering and -Processing in Smart Cities: An Information-Centric Approach

Reza Tourani, Abderrahmen Mtibaa, Satyajayant Misra

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 93-104, 2019, Downloads: 3495, Citations: 2

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919342634548084 | GNL-LP: 1195986262 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: The technological advancements along with the proliferation of smart and connected devices (things) motivated the exploration of the creation of smart cities aimed at improving the quality of life, economic growth, and efficient resource utilization. Some recent initiatives defined a smart city network as the interconnection of the existing independent and heterogeneous networks and the infrastructure. However, considering the heterogeneity of the devices, communication technologies, network protocols, and platforms the interoperability of these networks is a challenge requiring more attention. In this paper, we propose the design of a novel Information-Centric Smart City architecture (iSmart), focusing on the demand of the future applications, such as efficient machineto-machine communication, low latency computation offloading, large data communication requirements, and advanced security. In designing iSmart, we use the Named-Data Networking (NDN) architecture as the underlying communication substrate to promote semantics-based communication and achieve seamless compute/data sharing.

BibTex:

    @Article{OJIOT_2019v5i1n08_Tourani,
        title     = {Distributed Data-Gathering and -Processing in Smart Cities: An Information-Centric Approach},
        author    = {Reza Tourani and
                     Abderrahmen Mtibaa and
                     Satyajayant Misra},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {93--104},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919342634548084},
        urn       = {urn:nbn:de:101:1-2019092919342634548084},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {The technological advancements along with the proliferation of smart and connected devices (things) motivated the exploration of the creation of smart cities aimed at improving the quality of life, economic growth, and efficient resource utilization. Some recent initiatives defined a smart city network as the interconnection of the existing independent and heterogeneous networks and the infrastructure. However, considering the heterogeneity of the devices, communication technologies, network protocols, and platforms the interoperability of these networks is a challenge requiring more attention. In this paper, we propose the design of a novel Information-Centric Smart City architecture (iSmart), focusing on the demand of the future applications, such as efficient machineto-machine communication, low latency computation offloading, large data communication requirements, and advanced security. In designing iSmart, we use the Named-Data Networking (NDN) architecture as the underlying communication substrate to promote semantics-based communication and achieve seamless compute/data sharing.}
    }

 Open Access 

Leveraging Application Development for the Internet of Mobile Things

Felipe Carvalho, Markus Endler, Francisco Silva e Silva

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 105-116, 2019, Downloads: 3202, Citations: 3

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919343755312186 | GNL-LP: 1195986289 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: So far, most of research and development for the Internet of Things has been focused at systems where the smart objects, WPAN beacons, sensors, and actuators are mainly stationary and associated with a fixed location (such as appliances in a home or office, an energy meter for a building), and are not capable of handling unrestricted/arbitrary forms of mobility. However, our current lifestyle and economy are increasingly mobile, as people, vehicles, and goods move independently in public and private areas (e.g., automated logistics, retail). Therefore, we are witnessing an increasing need to support Machine to Machine (M2M) communication, data collection, and processing and actuation control for mobile smart things, establishing what is called the Internet of Mobile Things (IoMT). Examples of mobile smart things that fit in the definition of IoMT include Unmanned Aerial Vehicles (UAVs), all sorts of human-crewed vehicles (e.g., cars, buses), and even people with wearable devices such as smart watches or fitness and health monitoring devices. Among these mobile IoT applications, there are several that only require occasional data probes from a mobile sensor, or need to control a smart device only in some specific conditions, or context, such as only when any user is in the ambient. While IoT systems still lack some general programming concepts and abstractions, this is even more so for IoMT. This paper discusses the definition and implementation of suitable programming concepts for mobile smart things - given several examples and scenarios of mobility-specific sensoring and actuation control, both regarding smart things individually, or in terms of collective smart things behaviors. We then show a proposal of programming constructs and language, and show how we will implement an IoMT application programming model, namely OBSACT, on the top of our current middleware ContextNet.

BibTex:

    @Article{OJIOT_2019v5i1n09_Carvalho,
        title     = {Leveraging Application Development for the Internet of Mobile Things},
        author    = {Felipe Carvalho and
                     Markus Endler and
                     Francisco Silva e Silva},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {105--116},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919343755312186},
        urn       = {urn:nbn:de:101:1-2019092919343755312186},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {So far, most of research and development for the Internet of Things has been focused at systems where the smart objects, WPAN beacons, sensors, and actuators are mainly stationary and associated with a fixed location (such as appliances in a home or office, an energy meter for a building), and are not capable of handling unrestricted/arbitrary forms of mobility. However, our current lifestyle and economy are increasingly mobile, as people, vehicles, and goods move independently in public and private areas (e.g., automated logistics, retail). Therefore, we are witnessing an increasing need to support Machine to Machine (M2M) communication, data collection, and processing and actuation control for mobile smart things, establishing what is called the Internet of Mobile Things (IoMT). Examples of mobile smart things that fit in the definition of IoMT include Unmanned Aerial Vehicles (UAVs), all sorts of human-crewed vehicles (e.g., cars, buses), and even people with wearable devices such as smart watches or fitness and health monitoring devices. Among these mobile IoT applications, there are several that only require occasional data probes from a mobile sensor, or need to control a smart device only in some specific conditions, or context, such as only when any user is in the ambient. While IoT systems still lack some general programming concepts and abstractions, this is even more so for IoMT. This paper discusses the definition and implementation of suitable programming concepts for mobile smart things - given several examples and scenarios of mobility-specific sensoring and actuation control, both regarding smart things individually, or in terms of collective smart things behaviors. We then show a proposal of programming constructs and language, and show how we will implement an IoMT application programming model, namely OBSACT, on the top of our current middleware ContextNet.}
    }

 Open Access 

Integrating a Smart City Testbed into a Large-Scale Heterogeneous Federation of Future Internet Experimentation Facilities: the SmartSantander Approach

Pablo Sotres, Jorge Lanza, Juan Ramón Santana, Luis Sánchez

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 117-132, 2019, Downloads: 3840, Citations: 2

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919344775371207 | GNL-LP: 1195986300 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: For some years already, there has been a plethora of research initiatives throughout the world that have deployed diverse experimentation facilities for Future Internet technologies research and development. While access to these testbeds has been sometimes restricted to the specific research community supporting them, opening them to different communities can not only help those infrastructures to achieve a wider impact, but also to better identify new possibilities based on novel considerations brought by those external users. On top of the individual testbeds, supporting experiments that employs several of them in a combined and seamless fashion has been one of the main objectives of different transcontinental research initiatives, such as FIRE in Europe or GENI in United States. In particular, Fed4FIRE project and its continuation, Fed4FIRE+, have emerged as "best-in-town" projects to federate heterogeneous experimentation platforms. This paper presents the most relevant aspects of the integration of a large scale testbed on the IoT domain within the Fed4FIRE+ federation. It revolves around the adaptation carried out on the SmartSantander smart city testbed. Additionally, the paper offers an overview of the different federation models that Fed4FIRE+ proposes to testbed owners in order to provide a complete view of the involved technologies. The paper is also presenting a survey of how several specific research platforms from different experimentation domains have fulfilled the federation task following Fed4FIRE+ concepts.

BibTex:

    @Article{OJIOT_2019v5i1n10_Sotres,
        title     = {Integrating a Smart City Testbed into a Large-Scale Heterogeneous Federation of Future Internet Experimentation Facilities: the SmartSantander Approach},
        author    = {Pablo Sotres and
                     Jorge Lanza and
                     Juan Ram\'{o}n Santana and
                     Luis S\'{a}nchez},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {117--132},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919344775371207},
        urn       = {urn:nbn:de:101:1-2019092919344775371207},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {For some years already, there has been a plethora of research initiatives throughout the world that have deployed diverse experimentation facilities for Future Internet technologies research and development. While access to these testbeds has been sometimes restricted to the specific research community supporting them, opening them to different communities can not only help those infrastructures to achieve a wider impact, but also to better identify new possibilities based on novel considerations brought by those external users. On top of the individual testbeds, supporting experiments that employs several of them in a combined and seamless fashion has been one of the main objectives of different transcontinental research initiatives, such as FIRE in Europe or GENI in United States. In particular, Fed4FIRE project and its continuation, Fed4FIRE+, have emerged as "best-in-town" projects to federate heterogeneous experimentation platforms. This paper presents the most relevant aspects of the integration of a large scale testbed on the IoT domain within the Fed4FIRE+ federation. It revolves around the adaptation carried out on the SmartSantander smart city testbed. Additionally, the paper offers an overview of the different federation models that Fed4FIRE+ proposes to testbed owners in order to provide a complete view of the involved technologies. The paper is also presenting a survey of how several specific research platforms from different experimentation domains have fulfilled the federation task following Fed4FIRE+ concepts.}
    }

 Open Access 

Experimentation and Analysis of Ensemble Deep Learning in IoT Applications

Taylor Mauldin, Anne H. Ngu, Vangelis Metsis, Marc E. Canby, Jelena Tesic

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 133-149, 2019, Downloads: 4040, Citations: 8

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919352344146661 | GNL-LP: 119598636X | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: This paper presents an experimental study of Ensemble Deep Learning (DL) techniques for the analysis of time series data on IoT devices. We have shown in our earlier work that DL demonstrates superior performance compared to traditional machine learning techniques on fall detection applications due to the fact that important features in time series data can be learned and need not be determined manually by the domain expert. However, DL networks generally require large datasets for training. In the health care domain, such as the real-time smartwatch-based fall detection, there are no publicly available large annotated datasets that can be used for training, due to the nature of the problem (i.e. a fall is not a common event). Moreover, fall data is also inherently noisy since motions generated by the wrist-worn smartwatch can be mistaken for a fall. This paper explores combing DL (Recurrent Neural Network) with ensemble techniques (Stacking and AdaBoosting) using a fall detection application as a case study. We conducted a series of experiments using two different datasets of simulated falls for training various ensemble models. Our results show that an ensemble of deep learning models combined by the stacking ensemble technique, outperforms a single deep learning model trained on the same data samples, and thus, may be better suited for small-size datasets.

BibTex:

    @Article{OJIOT_2019v5i1n11_Mauldin,
        title     = {Experimentation and Analysis of Ensemble Deep Learning in IoT Applications},
        author    = {Taylor Mauldin and
                     Anne H. Ngu and
                     Vangelis Metsis and
                     Marc E. Canby and
                     Jelena Tesic},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {133--149},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919352344146661},
        urn       = {urn:nbn:de:101:1-2019092919352344146661},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {This paper presents an experimental study of Ensemble Deep Learning (DL) techniques for the analysis of time series data on IoT devices. We have shown in our earlier work that DL demonstrates superior performance compared to traditional machine learning techniques on fall detection applications due to the fact that important features in time series data can be learned and need not be determined manually by the domain expert. However, DL networks generally require large datasets for training. In the health care domain, such as the real-time smartwatch-based fall detection, there are no publicly available large annotated datasets that can be used for training, due to the nature of the problem (i.e. a fall is not a common event). Moreover, fall data is also inherently noisy since motions generated by the wrist-worn smartwatch can be mistaken for a fall. This paper explores combing DL (Recurrent Neural Network) with ensemble techniques (Stacking and AdaBoosting) using a fall detection application as a case study. We conducted a series of experiments using two different datasets of simulated falls for training various ensemble models. Our results show that an ensemble of deep learning models combined by the stacking ensemble technique, outperforms a single deep learning model trained on the same data samples, and thus, may be better suited for small-size datasets.}
    }

 Open Access 

Data Lifetime Estimation in a Multicast-Based CoAP Proxy

Jelena Misic, Vojislav B. Misic, Xiaolin Chang

Open Journal of Internet Of Things (OJIOT), 5(1), Pages 150-162, 2019, Downloads: 3183, Citations: 1

Full-Text: pdf | URN: urn:nbn:de:101:1-2019092919351017303648 | GNL-LP: 1195986335 | Meta-Data: tex xml rdf rss | Show/Hide Abstract | Show/Hide BibTex

Abstract: In this work we consider kernel-based record lifetime estimation in a proactive Internet of Things (IoT) proxy with multicast based cache management. Multicast refreshment requests were based on lifetime expiration for a predefined number of records. To reduce the traffic volume in the IoT domain, we assume that only nodes where the observed physical variable has changed its value will respond to the multicast request. For estimating the data lifetime at the proxy, we use Gaussian kernels, assuming that the intrinsic data lifetime probability distribution was taken from Erlang-k family of sub-exponential distributions. In this setup, we consider that the proxy connects to the IoT domain using an IEEE 802.15.4-compatible wireless network. Results indicate that narrow and symmetrical lifetime probability distributions require more frequent multicasting refreshments compared to wider and asymmetric ones. This increases traffic intensity and energy consumption in IoT domain. We quantify finding with numerical results.

BibTex:

    @Article{OJIOT_2019v5i1n12_Misic,
        title     = {Data Lifetime Estimation in a Multicast-Based CoAP Proxy},
        author    = {Jelena Misic and
                     Vojislav B. Misic and
                     Xiaolin Chang},
        journal   = {Open Journal of Internet Of Things (OJIOT)},
        issn      = {2364-7108},
        year      = {2019},
        volume    = {5},
        number    = {1},
        pages     = {150--162},
        url       = {http://nbn-resolving.de/urn:nbn:de:101:1-2019092919351017303648},
        urn       = {urn:nbn:de:101:1-2019092919351017303648},
        publisher = {RonPub},
        bibsource = {RonPub},
        abstract = {In this work we consider kernel-based record lifetime estimation in a proactive Internet of Things (IoT) proxy with multicast based cache management. Multicast refreshment requests were based on lifetime expiration for a predefined number of records. To reduce the traffic volume in the IoT domain, we assume that only nodes where the observed physical variable has changed its value will respond to the multicast request. For estimating the data lifetime at the proxy, we use Gaussian kernels, assuming that the intrinsic data lifetime probability distribution was taken from Erlang-k family of sub-exponential distributions. In this setup, we consider that the proxy connects to the IoT domain using an IEEE 802.15.4-compatible wireless network. Results indicate that narrow and symmetrical lifetime probability distributions require more frequent multicasting refreshments compared to wider and asymmetric ones. This increases traffic intensity and energy consumption in IoT domain. We quantify finding with numerical results.}
    }

OJIOT Publication Fees

All articles published by RonPub are fully open access and online available to readers free of charge. To be able to provide open access journals, RonPub defrays the costs (induced by processing and editing of manuscripts, provision and maintenance of infrastructure, and routine operation and management of journals) by charging an one-time publication fee for each accepted article. In order to ensure that the fee is never a barrier to publication, RonPub offers a fee waiver for authors from low-income countries. Authors who do not have funds to cover publication fees should submit an application during the submission process. Applications of waiver will be examined on a case by case basis. The scientific committee members of RonPub are entitled a partial waiver of the standard publication fees as reward for their work. 

  • Standard publication fee: 338 Euro (excluding tax).
  • Authors from the low-income countries: 71% waiver of the standard publication fee. (Note: The list is subject to change based on the data of the World Bank Group.):
    Afghanistan, Bangladesh, Benin, Bhutan, Bolivia (Plurinational State of), Burkina Faso, Burundi, Cambodia, Cameroon, Central African Republic, Chad, Comoros, Congo (Democratic Republic), Côte d'Ivoire, Djibouti, Eritrea, Ethiopia, Gambia, Ghana, Guinea, Guinea-Bissau, Haiti, Honduras, Kenya, Kiribati, Korea (Democratic People’s Republic), Kosovo, Kyrgyz Republic, Lao (People’s Democratic Republic), Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Micronesia (Federated States of), Moldova, Morocco, Mozambique, Myanmar, Nepal, Nicaragua, Niger, Nigeria, Papua New Guinea, Rwanda, Senegal, Sierra Leone, Solomon Islands, Somalia, South Sudan, Sudan, Swaziland, Syrian Arab Republic, São Tomé and Principe, Tajikistan, Tanzania, Timor-Leste, Togo, Uganda, Uzbekistan, Vietnam, West Bank and Gaza Strip, Yemen (Republic), Zambia, Zimbabwe
  • Scientific committee members: 25% waiver of the standard publication fee.
  • Guest editors and reviewers: 25% waiver of the standard publication fee for one year.

Payments are subject to tax. A German VAT (value-added tax) at 19% will be charged if applicable. US and Canadian customers need to provide their sales tax number and their certificate of incorporation to be exempt from the VAT charge; European Union customers (not German customers) need to provide their VAT to be exempt from the VAT charge. Customers from Germany and other countries will be charged with the VAT charge. Individuals are not eligible for tax exempt status.

Editors and reviewers have no access to payment information. The inability to pay will not influence the decision to publish a paper; decisions to publish are only based on the quality of work and the editorial criteria.

OJIOT Indexing

In order for our publications getting widely abstracted, indexed and cited, the following methods are employed:

  • Various meta tags are embedded in each publication webpage, including Google Scholar Tags, Dublic Core, EPrints, BE Press and Prism. This enables crawlers of e.g. Google Scholar to discover and index our publications.
  • Different metadata export formats are provided for each article, including BibTex, XML, RSS and RDF. This makes readers to cite our papers easily.
  • An OAI-PMH interface is implemented, which facilitates our article metadata harvesting by indexing services and databases.

The paper Getting Indexed by Bibliographic Databases in the Area of Computer Science provides a comprehensive survey on indexing formats, techniques and databases. We will also continue our efforts on dissemination and indexing of our publications.

OJIOT has been indexed by the following libraries and bibliographic databases:

Submission to Open Journal of Internet of Things (OJIOT)

Please submit your manuscript by carefully filling in the information in the following web form. If there technical problems, you may also submit your manuscript by sending the information and the manuscript to .

Submission to Regular or Special Issue

Please specify if the paper is submitted to a regular issue or one of the special issues:

Type of Paper

Please specify the type of your paper here. Please check Aims & Scope if you are not sure of which type your paper is.





Title

Please specify the title of your paper here:

Abstract

Please copy & paste the abstract of your paper here:

Authors

Please provide necessary information about the authors of your submission here. Please mark the contact authors, which will be contacted for the main correspondence.

Author 1:


Name:
EMail:
Affiliation:
Webpage (optional):

Author 2:


Name:
EMail:
Affiliation:
Webpage (optional):

Author 3:


Name:
EMail:
Affiliation:
Webpage (optional):

Add Author

Conflicts of Interest

Please specify any conflicts of interests here. Conflicts of interest occur e.g. if the author and the editor are colleagues, work or worked closely together, or are relatives.

Suggestion of Editors (Optional)

You can suggest editors (with scientific background of the topics addressed in your submission) for handling your submission. The Editor-in-Chief may consider your suggestion, but may also choose another editor.

Suggestion of Reviewers (Optional)

You can suggest reviewers (with scientific background of the topics addressed in your submission) for handling your submission. The editor of your submission may consider your suggestion, but may also choose other or additional reviewers in order to guarantee an independent review process.

Reviewer 1:

Name:
EMail:
Affiliation:
Webpage (optional):

Reviewer 2:

Name:
EMail:
Affiliation:
Webpage (optional):

Reviewer 3:

Name:
EMail:
Affiliation:
Webpage (optional):

Add Reviewer

Paper upload

Please choose your manuscript file for uploading. It should be a pdf file. Please take care that your manuscript is formatted according to the templates provided by RonPub, which are available at our Author Guidelines page. Manuscripts not formatted according to our RonPub templates will be rejected without review!

If you wish that the reviewer are not aware of your name, please submit a blinded manuscript leaving out identifiable information like authors' names and affiliations.

Choose PDF file...

Chosen PDF file: none

Captcha

Please fill in the characters of the image into the text field under the image.

Captcha

Submission

For Authors

Manuscript Preparation

Authors should first read the author guidelines of the corresponding journal. Manuscripts must be prepared using the manuscript template of the respective journal. It is available as word and latex version for download at the Author Guidelines of the corresponding journal page. The template describes the format and structure of manuscripts and other necessary information for preparing manuscripts. Manuscripts should be written in English. There is no restriction on the length of manuscripts.

Submission

Authors submit their manuscripts via the submit page of the corresponding journal. Authors first submit their manuscripts in PDF format. Once a manuscript is accepted, the author then submits the revised manuscript as PDF file and word file or latex folder (with all the material necessary to generate the PDF file). The work described in the submitted manuscript must be previously unpublished; it is not under consideration for publication anywhere else. 

Authors are welcome to suggest qualified reviewers for their papers, but this is not mandatory. If the author wants to do so, please provide the name, affiliations and e-mail addresses for all suggested reviewers.

Manuscript Status

After submission of manuscripts, authors will receive an email to confirm receipt of manuscripts within a few days. Subsequent enquiries concerning paper progress should be made to the corresponding editorial office (see individual journal webpage for concrete contact information).

Review Procedure

RonPub is committed to enforcing a rigorous peer-review process. All manuscripts submitted for publication in RonPub journals are strictly and thoroughly peer-reviewed. When a manuscript is submitted to a RonPub journal, the editor-in-chief of the journal assigns it to an appropriate editor who will be in charge of the review process of the manuscript. The editor first suggests potential reviewers and then organizes the peer-reviewing herself/himself or entrusts it to the editor office. For each manuscript, typically three review reports will be collected. The editor and the editor-in-chief evaluate the manuscript itself and the review reports and make an accept/revision/reject decision. Authors will be informed with the decision and reviewing results within 6-8 weeks on average after the manuscript submission. In the case of revision, authors are required to perform an adequate revision to address the concerns from evaluation reports. A new round of peer-review will be performed if necessary.

Accepted manuscripts are published online immediately.

Copyrights

Authors publishing with RonPub open journals retain the copyright to their work. 

All articles published by RonPub is fully open access and online available to readers free of charge.  RonPub publishes all open access articles under the Creative Commons Attribution License,  which permits unrestricted use, distribution and reproduction freely, provided that the original work is properly cited.

Digital Archiving Policy

Our publications have been archived and permanently-preserved in the German National Library. The publications, which are archived in the German National Library, are not only long-term preserved but also accessible in the future, because the German National Library ensures that digital data saved in the old formats can be viewed and used on current computer systems in the same way they were on the original systems which are long obsolete. Further measures will be taken if necessary. Furthermore, we also encourage our authors to self-archive their articles published on the website of RonPub.

For Editors

About RonPub

RonPub is academic publisher of online, open access, peer-reviewed journals. All articles published by RonPub is fully open access and online available to readers free of charge.

RonPub is located in Lübeck, Germany. Lübeck is a beautiful harbour city, 60 kilometer away from Hamburg.

Editor-in-Chief Responsibilities

The Editor-in-Chief of each journal is mainly responsible for the scientific quality of the journal and for assisting in the management of the journal. The Editor-in-Chief suggests topics for the journal, invites distinguished scientists to join the editorial board, oversees the editorial process, and makes the final decision whether a paper can be published after peer-review and revisions.

As a reward for the work of a Editor-in-Chief, the Editor-in-Chief will obtain a 25% discount of the standard publication fee for her/his papers (the Editor-in-Chief is one of authors) published in any of RonPub journals.

Editors’ Responsibilities

Editors assist the Editor-in-Chief in the scientific quality and in decision about topics of the journal. Editors are also encouraged to help to promote the journal among their peers and at conferences. An editor invites at least three reviewers to review a manuscript, but may also review him-/herself the manuscript. After carefully evaluating the review reports and the manuscript itself, the editor makes a commendation about the status of the manuscript. The editor's evaluation as well as the review reports are then sent to EiC, who make the final decision whether a paper can be published after peer-review and revisions. 

The communication with Editorial Board members is done primarily by E-mail, and the Editors are expected to respond within a few working days on any question sent by the Editorial Office so that manuscripts can be processed in a timely fashion. If an editor does not respond or cannot process the work in time, and under some special situations, the editorial office may forward the requests to the Publishers or Editor-in-Chief, who will take the decision directly.

As a reward for the work of editors, an editor will obtain a 25% discount of the standard publication fee for her/his papers (the editor is one of authors) published in any of RonPub journals.

Guest Editors’ Responsibilities

Guest Editors are responsible of the scientific quality of their special issues. Guest Editors will be in charge of inviting papers, of supervising the refereeing process (each paper should be reviewed at least by three reviewers), and of making decisions on the acceptance of manuscripts submitted to their special issue. As regular issues, all accepted papers by (guest) editors will be sent to the EiC of the journal, who will check the quality of the papers, and make the final decsion whether a paper can be published.

Our editorial office will have the right directly asking authors to revise their paper if there are quality issues, e.g. weak quality of writing, and missing information. Authors are required to revise their paper several times if necessary. A paper accepted by it's quest editor may be rejected by the EiC of the journal due to a low quality. However, this occurs only when authors do not really take efforts to revise their paper. A high-quality publication needs the common efforts from the journal, reviewers, editors, editor-in-chief and authors.

The Guest Editors are also expected to write an editorial paper for the special issue. As a reward for work, all guest editors and reviewers working on a special issue will obtain a 25% discount of the standard publication fee for any of their papers published in any of RonPub journals for one year.

Reviewers’ Responsiblity

A reviewer is mainly responsible for reviewing of manuscripts, writing reviewing report and suggesting acception or deny of manuscripts. Reviews are encouraged to provide input about the quality and management of the journal, and help promote the journal among their peers and at conferences.  

Upon the quality of reviewing work, a reviewer will have the potential to be promoted to a full editorial board member. 

As a reward for the reviewing work, a reviewer will obtain a 25% discount of the standard publication fee for her/his papers (the review is one of authors) published in any of RonPub journals.

Launching New Journals

RonPub always welcomes suggestions for new open access journals in any research area. We are also open for publishing collaborations with research societies. Please send your proposals for new journals or for publishing collaboration to This email address is being protected from spambots. You need JavaScript enabled to view it. .

Publication Criteria

This part provides important information for both the scientific committees and authors.

Ethic Requirement:

For scientific committees: Each editor and reviewer should conduct the evaluation of manuscripts objectively and fairly.
For authors: Authors should present their work honestly without fabrication, falsification, plagiarism or inappropriate data manipulation.

Pre-Check:

In order to filter fabricated submissions, the editorial office will check the authenticity of the authors and their affiliations before a peer-review begins. It is important that the authors communicate with us using the email addresses of their affiliations and provide us the URL addresses of their affiliations. To verify the originality of submissions, we use various plagiarism detection tools to check the content of manuscripts submitted to our journal against existing publications. The overall quality of paper will be also checked including format, figures, tables, integrity and adequacy. Authors may be required to improve the quality of their paper before sending it out for review. If a paper is obviously of low quality, the paper will be directly rejected.

Acceptance Criteria:

The criteria for acceptance of manuscripts are the quality of work. This will concretely be reflected in the following aspects:

  • Novelty and Practical Impact
  • Technical Soundness
  • Appropriateness and Adequacy of 
    • Literature Review
    • Background Discussion
    • Analysis of Issues
  • Presentation, including 
    • Overall Organization 
    • English 
    • Readability

For a contribution to be acceptable for publication, these points should be at least in middle level.

Guidelines for Rejection:

  • If the work described in the manuscript has been published, or is under consideration for publication anywhere else, it will not be evaluated.
  • If the work is a plagiarism, or contains data falsification or fabrication, it will be rejected.
  • Manuscripts, which have seriously technical flaws, will not be accepted.

Call for Journals

Research Online Publishing (RonPub, www.ronpub.com) is a publisher of online, open access and peer-reviewed scientific journals.  For more information about RonPub please visit this link.

RonPub always welcomes suggestions for new journals in any research area. Please send your proposals for journals along with your Curriculum Vitae to This email address is being protected from spambots. You need JavaScript enabled to view it. .

We are also open for publishing collaborations with research societies. Please send your publishing collaboration also to This email address is being protected from spambots. You need JavaScript enabled to view it. .

Be an Editor / Be a Reviewer

RonPub always welcomes qualified academicians and practitioners to join as editors and reviewers. Being an editor/a reviewer is a matter of prestige and personnel achievement. Upon the quality of reviewing work, a reviewer will have the potential to be promoted to a full editorial board member.

If you would like to participate as a scientific committee member of any of RonPub journals, please send an email to This email address is being protected from spambots. You need JavaScript enabled to view it. with your curriculum vitae. We will revert back as soon as possible. For more information about editors/reviewers, please visit this link.

Contact RonPub

Location

RonPub UG (haftungsbeschränkt)
Hiddenseering 30
23560 Lübeck
Germany

Comments and Questions

For general inquiries, please e-mail to This email address is being protected from spambots. You need JavaScript enabled to view it. .

For specific questions on a certain journal, please visit the corresponding journal page to see the email address.