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ABSTRACT

In smart city development, addressing air pollution and climate change through advanced environmental monitoring
systems is crucial for enhancing urban quality of life and public health. This study focuses on the architecture of
an intelligent system designed for real-time environmental monitoring in smart cities. The system aims to improve
urban quality of life by addressing air pollution and climate change and assessing their impact on public health.
The proposed system uses Arduino technology and integrated sensors to monitor PM10, PM2.5, toxic gases, and
temperature. It incorporates a database in InfluxDB and Node-RED for efficient data management and visualization.
The analysis employs the Knowledge Discovery in Data (KDD) methodology, Principal Component Analysis (PCA),
and the DBSCAN algorithm for clustering high-pollution areas. The findings highlight the significant impact
of air quality variables on environmental comfort. The system effectively identifies areas with high pollution
levels, enabling informed urban planning and decision-making. In conclusion, this study emphasizes the need
for effective air quality management and cross-sector collaboration to create healthier urban environments. The
intelligent system demonstrates the potential for enhancing environmental comfort and addressing the environmental
challenges of modern cities.
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1 INTRODUCTION

A smart city can be conceptualized as a traditional
urban environment augmented with innovative features
designed to enhance the quality of life for its citizens and
promote overall well-being. Economically, integrating
technology within a smart city can stimulate and
revitalize the local economy, fostering the growth of
the digital economy. Socially, a smart city encourages
the formation of online communities and enriches
social life by providing platforms for interaction and
engagement. Politically, a smart city enhances citizen
participation and engagement through online decision-

making, fostering a more inclusive and responsive
governance system. Environmentally, a smart city
integrates urban living with ecological responsibilities,
promoting sustainability and encouraging lifestyles that
preserve natural elements, such as green corridors for
flora and fauna. Technologically, a smart city is
characterized by its advanced infrastructure and services,
leveraging cutting-edge technology to improve urban
living conditions and efficiency [4].

To further understand the implications of smart cities,
it is crucial to examine the environmental system, which
provides valuable insights into the functioning of a
city. As noted by Cueva, Lopera, and Torner [40],
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humans have historically sought to understand the
interplay between climatic conditions and human well-
being, particularly regarding bio-climatic comfort. In
his study, Hippocrates posited that health and well-being
are intrinsically linked to climate. His treatise “On
Air, Water, and Places” emphasized that elements such
as air, water, and climatic conditions are crucial for
the health of a city’s inhabitants. Consequently, it is
evident that environmental factors significantly impact
an individual’s health, well-being, and happiness [40],
[4].

Given the significance of environmental factors,
defining comfort is inherently complex due to its
subjective nature and the necessity to encompass various
perspectives. Several researchers describe comfort
primarily as a state of climatic or thermal well-
being; however, it also encompasses other forms of
material satisfaction. This well-being is emphasized
due to a harmonious balance between humans and their
environment, making it a topic of ongoing interest and
diverse interpretations [40].

Building on these concepts, Max Sorre, in his
study The Foundations of Human Geography, discusses
the concept of climatic comfort and its relationship
with the micro-climate of cities and human-induced
modifications [46]. The sustainability and livability
of urban environments are pivotal aspects of this
discourse. Consequently, smart cities endeavor to
integrate advanced technologies across environmental
sectors to address these concerns. Key initiatives include
reducing CO2 emissions, controlling airborne pollutants,
and managing water resources more efficiently. The
incorporation of greenery into urban areas enhances
both residents’ well-being and the health of ecosystems.
Furthermore, efforts to minimize waste generation and
improve waste management are crucial in advancing
the circular economy. Metrics such as temperature,
humidity, toxic gases, particulate matter, and noise
pollution are vital for assessing human comfort in these
settings.

However, migrating people from rural to urban areas
leads to a scarcity of natural resources and environmental
challenges in both cities and resource extraction areas.
Uncontrolled urban growth exacerbates climate change,
as urban areas account for 70% of greenhouse gas (GHG)
emissions, with urban transport contributing 40% of
these emissions. The primary issues associated with this
growth include high resource consumption, pollution,
and waste generation, with significant pollutants being
carbon dioxide, nitrogen oxide, and tropospheric ozone.

To address these environmental challenges, CETESB
DE PORTAS ABERTAS1 presented a vehicle pollution

1 https://cetesb.sp.gov.br/

control plan for 2023-2025, responding to Brazil’s
vehicle fleet reaching 947,743 vehicles in 20222. This
plan includes (a) regulation and control of new and
existing vehicles and (b) institutional and technological
actions. Additionally, there is an emphasized need for
advanced monitoring systems for specific locations. This
project aims to develop a real-time response system to
address these challenges.

Building on the regulatory and technological
frameworks, this study aims to explore various
researchers’ perspectives on the concepts of intelligence
and environmental comfort to develop an intelligent
system that assesses environmental impact. This system
will enable individuals to monitor the state of the
environment in real-time and travel safely. The research
will delve into multiple viewpoints within the field
of environmental comfort and create a monitoring
system to track levels of hazardous gases such as
carbon monoxide (CO), ozone (O3), nitrogen dioxide
(NO2), and particulate matter (PM2.5 and PM10), using
Arduino and integrated sensors as the primary tracking
mechanism.

Furthermore, sensor data will be gathered and
analyzed to establish correlations and determine the
environmental comfort level. The study will also expand
the scope of applications for environmental intelligence
and evaluate different data mining techniques to
enhance the system’s effectiveness. The proposed
research project investigates whether the combination
of temperature, humidity, toxic gases, and particulate
matter can indicate human comfort. The study is driven
by specific inquiry questions, such as (a) identifying
elements that influence individuals’ comfort within
their surroundings, (b) evaluating existing technological
solutions for assessing environmental comfort impacts,
(c) analyzing how short-term exposure to environmental
pollutant concentrations (measured in µg/m³) affects
the health and comfort of Campinas residents, and (d)
determining minimal contamination levels that may pose
health risks. This research aims to comprehensively
understand the factors contributing to human comfort
and health, assess current technologies, and identify
critical pollutant thresholds.

Viewed through the lens of smart cities, this project
initiates discussions involving multiple stakeholders to
foster a secure, hygienic, and conducive environment for
a high quality of life. This study provides insights into
how the environment influences urban settings. While
previous studies have primarily focused on technological
interventions to enhance citizen safety, none have
addressed the measurement of environmental comfort.

2 https://cetesb.sp.gov.br/veicular/wp-content/uploads/sites/6/2023/04/Plano-
de-Controle-de-Prevencao-Veicular-2023-2025.pdf
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This research endeavor introduces pioneering efforts
in environmental monitoring through sensor-based data
collection, processing, and dissemination of real-time
information pertinent to environmental comfort.

The following sections will outline the proposed
research methodology and system architecture, discuss
the theoretical foundations of our approach, and present
an analysis to evaluate the effectiveness of the modified
method. Additionally, we will provide a comprehensive
review of the environmental landscape in Brazil. Finally,
we will discuss the practical implications of this
approach and suggest avenues for future research.

1.1 Key Contributions

In the growing concerns about sustainability and well-
being in smart cities, this research comprehensively
addresses the challenges and opportunities in air quality
management and urban comfort. Through an innovative
approach that combines advanced technologies with
rigorous analytical methodologies, the study aims to
provide practical and effective solutions to enhance
public health and quality of life in urban environments.
The following highlights the key contributions of this
work, which reflect both the impact of the research on
understanding atmospheric pollution and its practical
application in the design and management of sustainable
smart cities:

1. Impact of Atmospheric Pollution on Public
Health: The study underscores the severe threat
that air pollution poses to public health. The
research significantly contributes by addressing
the need for constant and efficient air quality
monitoring in smart cities, which is crucial for
mitigating health risks associated with atmospheric
pollution and protecting vulnerable communities.

2. Challenges of Toxic Gas and Particulate Matter
Pollution: The analysis addresses the challenges
associated with pollution from toxic gases and
particulate matter (PM), which adversely affect
human health, such as respiratory problems and
cardiovascular diseases. The research provides
a practical solution by developing an intelligent
system that uses advanced sensors for real-time
detection and monitoring of these pollutants,
offering a valuable tool for proactive air quality
management.

3. Urban Comfort and Climate Well-being: The
work highlights the importance of thermal comfort
and humidity in the perception of well-being
in urban settings. An integrated approach is
proposed that considers air quality and other

environmental factors such as temperature and
humidity. This holistic approach is essential for
designing sustainable and pleasant cities for their
inhabitants, enhancing their quality of life.

4. Intersection of Urban Planning and
Environmental Health: The research emphasizes
the need to integrate urban planning and
environmental health. It presents a framework
for analyzing the environmental impact on public
health within the context of smart cities. This
provides crucial data for urban planners and
promotes urban development that prioritizes the
well-being of citizens.

5. Relevance of Real-Time Monitoring: The
study highlights the importance of systems that
enable continuous air quality monitoring and
other environmental parameters. The contribution
of designing an IoT-based system for real-time
monitoring allows for proactive environmental
management, facilitating early intervention and
improving response capacity to pollution events.

6. Application of Knowledge Discovery in Data
(KDD) Methodology: The research rigorously
applies the KDD methodology to extract valuable
insights from the collected data. The KDD process
in this study includes data selection, statistical
analysis, and pattern identification using advanced
techniques such as histograms and key statistical
measures. This structured approach ensures a deep
understanding of air quality data, allowing for the
identification of extreme values that could represent
risks to public health. The KDD methodology
provides a solid foundation for improving future air
quality management technologies and policies.

7. Analysis of Low-Cost Sensors for Measuring
Environmental Variables: The study also
examines the application of low-cost sensors to
measure key environmental variables, which
reduces monitoring costs and expands the
accessibility of these technologies in resource-
limited areas. This strategy facilitates the
implementation of monitoring systems in various
contexts, promoting sustainability and equity in
environmental management.

8. Presentation of a Reference Framework for
IoT Architecture: Finally, the research offers a
reference framework for the IoT architecture used
in the monitoring system. This framework is crucial
for effectively integrating sensors, communication
modules, and analysis platforms, providing a solid
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basis for future developments in environmental
quality management in smart cities.

The research presents a comprehensive technological
solution that addresses the challenges of air quality and
urban comfort, highlighting the application of the KDD
methodology for in-depth data analysis. The study
significantly contributes to creating healthier and more
sustainable cities through advanced technologies and
real-time monitoring, improving citizens’ quality of life,
and promoting environmental well-being.

2 RELATED WORK

In this section, we emphasize the critical importance
of the environment for public health and the severe
consequences of environmental degradation. We
describe several polluting variables and analyze their
impact on citizens’ health. Additionally, we explore
fundamental concepts related to data mining, sensors,
and architectures presented in similar projects.

2.1 Particulate Matter and Air Quality

Several environmental studies underscore the
significance of particulate matter (PM10 and PM2.5)
suspended in the atmosphere. For instance, [25]
provides a spatio-temporal analysis of PM10 and
PM2.5, elucidating the direct impact of factors such
as wind direction, road infrastructure, and the spatial
dispersion of pollutant sources on their concentrations.

Related research by [17] and [35] characterizes air
quality through the lens of PM10 and PM2.5 levels. [17]
reveals average PM2.5 values of 30.11 µg/m³ and PM10
values of 39.82 µg/m³, indicating a direct correlation
between ambient temperature and particulate matter
concentration, while relative humidity shows an inverse
relationship.

In Colombia, studies on air quality and particulate
matter by [37] and [9] provide significant insights. [37]
discusses variations in particle diameters attributed to
emission sources and examines the physical factors
affecting particle re-suspension. Concurrently, [9]
investigates the influence of travel patterns, traffic
volume, and street layout on pollutant exposure,
employing a methodology involving area analysis,
particle monitoring, inhalation rate adjustment, and data
collection.

The application of data science and computational
techniques in air pollution analysis is also noteworthy.
[44] employs the CART method to partition observations
into homogeneous terminal nodes. Similarly, [49]
demonstrates the significant influence of meteorological
and air pollution factors on fine dust using machine

learning algorithms, such as linear regression and
decision trees. Furthermore, [1] advocates using MLP-
NN neural networks to model particulate matter due to
its non-linear characteristics.

Researchers have also addressed monitoring toxic
gases such as HCN, CO, H2S, NO2, NH3, and SO2. For
example, [50] utilizes IoT technology with components
like the STM32F103 chip and a wireless transmission
module. At the same time, [30] proposes a sensor system
that sends alerts via GSM when pollutant levels exceed
predefined limits.

For thermal comfort determination, [34] and [28]
analyze relative humidity and temperature using
programs like Labview for monitoring, data acquisition,
and parameter calculation.

Big data technologies have proven valuable for
environmental monitoring. [45] discusses using Apache,
MapReduce, HBase, data mining, and visualization for
Environmental Monitoring and Management Systems
(EMMS). Additionally, [16] proposes novel data
visualization dashboards to support anomaly prediction
and enhance decision-making.

In summary, modern technologies and analytical
techniques are essential for understanding and mitigating
the impact of air pollution on public health.

2.2 Architecture and Components

The architecture described in [45] leverages sensor
technology to collect data, which is then processed in
an upper layer using various big data technologies and
data mining techniques. This process transforms raw
data into useful information for different applications,
addressing the needs of Environmental Monitoring
and Management Systems (EMMS). For environmental
monitoring using the Internet of Things (IoT), authors in
[20] implemented a 4-layer architecture:

• Application Layer: This layer stores, organizes,
processes, and shares environmental data and other
information obtained from sensors, devices, and
web services. It also includes decision-making
functions through monitoring various variables.

• Middleware Layer: Positioned between the network
layer and the application layer, this layer utilizes
software, tools, models, and platforms for data
management.

• Network Layer: Responsible for transmitting
information and interconnecting systems and
platforms. This layer is divided into access
networks (short-range wireless networks) and
transport networks (WAN networks).
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• Perception Layer: Collects data and information
about physical factors related to environmental
monitoring and management. Real-time data
collection based on IoT in this layer involves using
multiple sensors, including RS platforms, on-site
instruments, mobile technology, RFID, and other
sensors.

The EMMS architecture is depicted in Figure 1.

Figure 1: Detailed Architecture of the Environmental
Monitoring and Management System (EMMS),
illustrating the interactions between the sensing,
processing, and application layers.

The Environmental Monitoring and Management
System (EMMS) architecture comprises three primary
layers: sensing, processing, and application. The
sensing layer is responsible for collecting various types
of data, including air quality data, meteorological
data, and sensor data. This data is then transmitted
to the processing layer, which comprises several
components: data processing, data storage, and Hadoop
tools. The data process component handles the
processing model, data fusion, standardization, and
filtering. The data storage component features a
Data Warehouse (DW) that supports dynamic expansion
and integrates NoSQL databases for scalable data
management. Hadoop tools3 within the processing layer
facilitate data visualization, data processing with Hive4,
and large-scale data analysis using MapReduce and
stream technology. Finally, the application layer utilizes
the processed data to provide user-facing services such
as air quality maps, environmental quality prediction,

3 https://hadoop.apache.org/
4 https://hive.apache.org/

and pollution sources analysis through web and mobile
applications. This layered architecture ensures efficient
data collection, processing, storage, and visualization,
enabling comprehensive environmental monitoring and
management.

2.3 Environment, Society, and Health

From its inception to today, humanity has contended
with myriad challenges to survive as a species on
Earth. From addressing hunger to adapting to extreme
temperatures, humans have continually sought new ways
to navigate their environment.

As society has evolved, diverse cultural groups have
emerged, each characterized by distinct behaviors and
values. Human interaction with biotic and abiotic
elements has led to adverse effects, some of which carry
irreversible consequences. Such issues, as detailed by
[12], are recognized as ecological problems.

Human activities generate particles, gases, vapors,
and other atmospheric pollutants, crucial in transmitting
airborne diseases and significant for public health.
Scholars have noted that air pollution disproportionately
impacts impoverished communities, even within affluent
nations. Karti Sandilya, a study author from the
NGO Pure Earth, underscores the interconnectedness of
pollution, poverty, health, and social injustice.

In 2015, pollution in Brazil accounted for 101,739
deaths, accounting for 7.49% of the country’s total
fatalities. Of these, 70,685 deaths were attributed to air
pollution alone. Brazil ranked 148th globally regarding
pollution-related deaths, trailing behind neighboring
South American countries such as Uruguay, Chile, and
Ecuador. This analysis, conducted by The Lancet,
encompassed 188 countries [33].

2.4 Atmospheric Pollution

Toxic gas pollution occurs when the Earth’s atmospheric
composition is altered by solid or liquid gases or
suspended particles in proportions different from natural
levels, posing significant risks to human health. These
gases can damage various materials, reduce visibility,
and emit unpleasant odors, constituting detrimental
environmental changes [26].

Certain industries release hazardous gases into the
atmosphere. Pollution from specific sources can disperse
across extensive geographic regions with relatively
minimal localized impact. However, diffuse pollution
can be concentrated by wind patterns and topographical
features, leading to significant effects in urban areas.
Since the 1970s, chlorofluorocarbons (CFCs) have been
identified as potent greenhouse gases, significantly
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contributing to the depletion of the ozone layer in the
stratosphere.

Indoor air pollution arises from various sources,
including tobacco use, specific construction materials,
cleaning agents, and household furnishings. Many
researchers posit that this pollution also contributes to
global warming [3]. Chlorofluorocarbons (CFCs) are
primarily responsible for damaging the ozone layer.
Typically, pollutants disperse from their origins without
accumulating to hazardous levels. However, weather
patterns can transport pollutants from land sources,
posing risks to previously clean environments. Health
issues associated with increased air pollution include
impaired lung function and elevated risks of heart attacks
[18]. The dispersion of pollutants in the atmosphere and
their subsequent effects play a critical role in the overall
impact of air pollution.

2.5 Toxic Gases

Toxic gases are substances that, when inhaled over
time, can exert various effects on human health, ranging
from unconsciousness to potentially fatal outcomes if
untreated. These gases pose significant risks and
challenges for the environment and living organisms at
high atmospheric concentrations. While some pollutant
gases originate naturally, such as those emitted by
volcanic activity, industrial activities, including fossil
fuel combustion and heavy road traffic, significantly
contribute to their production [11]. Table 1 displays
the Air Quality Guideline levels the World Health
Organization set.

Table 1: Air Quality Guideline levels and interim
targets for CO, NO2, and NH3 (in g/m

3, ppm)

Recommendation CO NO2 NH3

Interim target 1 7, 0.006 120, 0.064 800, 1.149
Interim target 2 N/A 50, 0.027 400, 0.574
AQG level 4 25, 0.013 200, 0.287

Common pollutant gases include sulfur compounds,
carbon monoxide (CO), sulfur dioxide (SO2), nitrogen
dioxide (NO2), and ammonia (NH3). Sulfur compounds,
released during the combustion of coal or oil, irritate
the eyes and respiratory system, exacerbating respiratory
diseases, particularly in vulnerable populations. Carbon
monoxide (CO), a colorless and odorless gas, displaces
oxygen in the bloodstream, causing symptoms ranging
from headaches to death at high concentrations. Sulfur
dioxide (SO2), known for its pungent odor, is emitted
from combustion processes and industrial activities,
contributing to air pollution and acid rain formation.
Nitrogen dioxide (NO2), produced from fuel combustion

in vehicles and industrial processes, is a toxic gas
characterized by a strong odor and brown color.
Ammonia (NH3), originating from the decomposition of
organic matter and agricultural practices, contributes to
nitrogen oxide formation, posing health risks to humans
[11].

2.6 Particulate Material

Particulate matter (PM) in the atmosphere is a mix of
solid and liquid particles, with diameters ranging from
20 microns to less than 0.05 microns. Due to its complex
nature, PM is characterized not only by its concentration
but also by its diameter, chemical composition, phase,
and morphology [43]. Table 2 classifies types of
particulate matter harmful to human health. Smaller
particles are particularly dangerous as they can penetrate
deeper into the respiratory tract, potentially causing
severe health issues and even death [22].

Table 2: Particulate Material Types

Particulate Matter Diameter Name
PM 0.1 up to 0.1 µm Ultrafine
PM 2.5 0.1 to 2.5 µm Fine
PM 10 2.5 to 10 µm Coarse
PTS 10 to 50 µm Thick Inhalable

Fine particles, often resulting from combustion
processes in vehicles, industries, and biomass burning,
differ from coarse inhalable particles generated by
mechanical processes like wind erosion, sea waves, and
grinding operations. Particle size significantly influences
their health impact, with smaller particles such as PM2.5
being linked to respiratory and cardiovascular issues on
a global scale [8].

In its 2005 global update, the World Health
Organization (WHO)5 established interim targets for air
quality to reduce high concentrations of air pollutants
that pose severe health risks. Table 3 presents the short-
term (24-hour) exposure levels for PM10 and PM2.5.

Table 3: AQG level and interim targets for PM10 and
PM2.5

Recommendation PM10 (µg/m3) PM2.5 (µg/m3)
Interim target 1 150 75
Interim target 2 100 50
Interim target 3 75 37.5
Interim target 4 50 25
AQG level 45 15

5 https://www.who.int/
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The recommended short-term PM2.5 Air Quality
Guideline (AQG) level is 15 µg/m³, and for PM10,
it is 45 µg/m³. These levels are defined as the 99th
percentile of the annual distribution of 24-hour average
concentrations. Exposure to PM2.5 at these levels
is associated with varying mortality rates at different
interim target levels.

2.7 Comfort, Humidity, and Heatwave

In the 20th century, studies on the relationship between
humans, cities, and climate began with the pioneering
work of [32] and [13]. These studies initiated
urban climate research, highlighting the importance of
understanding energy and humidity balances for bio-
climatic comfort. Urban environments can positively and
negatively impact comfort, prompting recent research to
focus on the intersection of urban climate, comfort, and
urban planning.

Humidity, influenced by rainfall, proximity to the sea,
vegetation, and air temperature, affects human comfort
by altering air quality perception, thermal sensation, and
skin moisture. Thermal comfort, defined as satisfaction
with the thermal environment [19], involves multiple
factors that affect sensory and physiological responses
[24]; [5]. Mechanical comfort relates to the direct
impact of wind [10]. Most individuals feel comfortable
at temperatures between 21°C and 26°C and relative
humidity levels between 30% and 70%.

2.7.1 Humidex

In 1979, Masterton and Richardson introduced the
humidex, a temperature-humidity index designed to
correlate external thermal discomfort in Canada’s
temperate zones [36]. This index utilizes air temperature
and relative humidity as its sole meteorological
parameters. The humidex is based on two key
hypotheses: first, the human body’s neutral point for heat
balance falls within the range of 27°C to 30°C; second,
the body struggles to dissipate heat effectively when
the temperature exceeds 32°C and the relative humidity
surpasses 75%. The humidex is mathematically defined
as:

HD = ta +
5

9
(pas − 10) (1)

where ta represents the temperature in degrees
Celsius, and pas denotes the water vapor pressure in
millibars, calculated according to the equation:

pas = 6, 112
(
10

7,5ta
237,7+ta

) RH

100
(2)

The Relative Humidity (RH) index provides insights
into human comfort levels amidst varying weather

conditions, emphasizing the impact of temperature and
humidity on thermal discomfort.

Table 4 displays the thermal sensation ranges based on
humidex values. Discomfort is not typically felt when the
humidex is below 29. However, values of 40 or higher
indicate significant thermal discomfort due to factors
such as air currents, temperature differences, or surface
variations.

Table 4: Humidex levels

Thermal sensation Humidex value
No discomfort < 29
Mild discomfort From 30 to 39
Discomfort, avoid exertion From 40 to 45
Risk From 46 to 54
Impending heat stroke > 54

Table 4 specifies four ranges: Humidex values below
29 indicate no discomfort, values between 30 and 39
suggest mild discomfort, and values from 40 to 45
indicate discomfort where exertion should be avoided.
Humidex values between 46 and 54 represent a risk
of heat-related health issues, and values exceeding 54
signal an impending heat stroke, underscoring severe
thermal stress. This classification helps assess and
respond to different levels of heat discomfort for public
health and safety.

2.7.2 Heatwave

Heatwave definitions vary in the literature, with some
considering temperatures exceeding 35ºC as a criterion.
Heat waves can also be defined as consecutive days with
temperatures surpassing the 95th percentile.

This study utilizes the CTXP90 index (cutoff value
from the P90 of maximum temperatures over 15
days) and the Heat Wave Magnitude Index (HWMI).
The HWMI defines a heat wave as two or more
consecutive days with maximum temperatures above
the 90th percentile in a 30-day window centered on
the assessment day. Adapted from [42] and [23], this
algorithm identifies hot days based on historical data
spanning 22 years. The algorithm involves:

1. Calculating the 90th percentile (P90(d)) of
maximum temperatures for each day d over a
15-day range.

2. Iterating through observations until a heat wave
condition is met: a heat wave begins if maximum
temperatures on days d, d+1, and d+2 exceed their
respective P90 values.
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3. Marking consecutive days as part of the heat
wave and incrementing the counter (i) until all
observations are processed.

Since the data is time-dependent, machine learning
algorithms are adapted to recognize temporal patterns
and behaviors.

2.7.3 Database Architectures for IoT

Many database systems with varying speed, latency,
and scalability characteristics have been developed to
manage massive volumes of real-time data, mostly
in smart city applications. These developments are
a result of the expansion of IoT infrastructures.
Common solutions, each tailored for certain purposes
and scenarios, include distributed databases, time series
databases, and cloud-based methods.

Time series databases (TSDB) are particularly useful
for managing sensor data in the Internet of Things (IoT)
space because they maximize temporal data querying
and storage. One of the most widely used TSDBs in this
context is InfluxDB, which has demonstrated efficacy
in gathering and evaluating substantial amounts of real-
time data. Because its design enables quick searches and
effective storage, it is a desirable choice for Internet of
Things applications that need continuous and real-time
data handling [38][29].

Though TSDBs are very helpful for cloud-based
and centralized applications, they can present some
difficulties when used in large-scale distributed
infrastructures. For instance, sensor networks in
smart cities produce vast amounts of data that are
scattered geographically, which can lead to significant
transfer costs and latency problems when utilizing
a fully centralized cloud-based architecture. Under
these circumstances, comparing solutions that improve
performance without sacrificing system scalability and
economy is required.

The flexibility and scalability of cloud-based systems
have made them popular for managing sensor data in
Internet of Things applications. Under these methods,
sensor data is gathered and sent to cloud servers for
processing, storing, and querying. With this strategy,
businesses don’t have to worry about the underlying
hardware and can swiftly scale their infrastructures to
manage growing data volumes. That being said, latency
is a major problem with cloud infrastructure. The
delays that come with transmitting data to the cloud
for processing might lead to subpar performance in
applications like smart cities, where quick decision-
making is essential [48].

Furthermore, if sensors’ quantity and frequency
increase, the data transport cost between dispersed

devices and the cloud may rise significantly. To lessen
dependency on centralized cloud services, distributed
architectures—one more effective alternative—have
been investigated in response to these difficulties.
Distributed databases have become a viable way to
overcome the drawbacks of centralized designs in large-
scale IoT infrastructures, such as smart cities. As a
result of these databases’ ability to process and store
data across different geographical locations, latency and
transfer costs are decreased as all data is not required to
pass via a single central cloud server [39][2].

Distributed architectures, in particular, have been
shown to greatly increase performance in wireless
sensor networks in recent research, such as A
SPARQL Benchmark for Distributed Databases in
IoT Environments. This method more effectively
distributes data, enabling queries to run more quickly
in geographically scattered situations. According to
the study, RDF3X and Hexastore are two partitioning
strategies and topologies that can optimize network
traffic and enhance the management of scattered data
[48][6].

Depending on the context of the application, cloud-
based techniques and distributed architectures are
comparable, and each has its advantages. Cloud
solutions are perfect for smaller or centralized
applications since they are simple to implement
and scale. On the other hand, distributed architectures
provide advantages over centralized IoT infrastructures,
such as smart cities, in terms of lowering latency and
data transfer costs [31].

While time series databases like InfluxDB are
optimized for quick queries, their use in distributed
infrastructures may be limited by the costs associated
with transferring large volumes of data to the cloud,
according to recent studies like the Application of Time
Series Database for IoT Smart City Platform. Distributed
designs, on the other hand, enable more localized data
processing and storage, which lowers network traffic and
boosts overall system efficiency [27]

To summarize, selecting database designs for the
Internet of Things necessitates careful consideration
of factors such as infrastructure size, data type, and
performance demands. Large-scale dispersed situations
may limit TSDBs like InfluxDB in centralized designs,
even though these databases are incredibly efficient at
managing massive amounts of temporal data in real-
time. In these situations, distributed databases provide
a more scalable and economical option, improving
performance by cutting down on latency and network
expenses. For IoT infrastructures like smart cities,
where scalability and efficiency are critical, combining
distributed methods with technologies like InfluxDB
may offer the perfect mix.
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3 MATERIALS AND METHODS

We designed, developed, and implemented
computational intelligence technologies to monitor
air quality and noise levels, establishing the comfort
levels associated with various environmental conditions.

3.1 Materials

The system initially used sensors and a programming
board, with plans for a database and cloud connectivity
to store collected data. The core hardware, an
ESP32 SIM800L T-CALL V1.3, gathered data from
integrated sensors and communicated with the server via
a GSM module, efficiently managing data collection and
transmission.

3.1.1 LILYGO® TTGO T-Call V1.4 ESP32

The TTGO T-Call is an advanced ESP32 development
board featuring a SIM800L GSM/GPRS module. In
addition to Bluetooth and Wi-Fi capabilities, it allows
communication via SMS, phone calls, and internet
connectivity. It utilizes the ESPRESSIF-ESP32 chipset,
which includes a 240MHz Xtensa® processor with one
or two 32-bit LX6 cores, ensuring robust performance.
The board has 4MB of QSPI flash memory, 8MB of
PSRAM, and 520 kB of SRAM.

Figure 2: Pinout Diagram of the ESP32 SIM Card
SIM800L T-Call V1.4, showcasing the various pin
configurations and functionalities.

Figure 2 illustrates the pinout and specifications of
the pins. This comprehensive information facilitates
informed decision-making and implementation for
various applications. Key hardware features of the
TTGO T-Call include a reset button and the CP2104
chip for USB to TTL communication. Its modular
interface supports various connectivity options such as
UART, SPI, SDIO, I2C, PWM, TV PWM, I2S, and

IRGPIO, making it highly versatile. The board operates
within a voltage range of 2.7V to 3.6V, with a current
consumption of approximately 70mA during operation
and around 1.1mA in sleep mode.

Table 5: LILYGO® TTGO T-Call V1.4 ESP32

Hardware Details
Chipset ESPRESSIF-ESP32 240MHz

Xtensa® single-/dual-core 32-bit LX6
FLASH QSPI flash 4MB / PSRAM 8MB
SRAM 520 kB SRAM
Button Reset
USB to TTL CP2104
Modular interface UART, SPI, SDIO, I2C, PWM, TV

PWM, I2S, IRGPIO
Working voltage 2.7V-3.6V
Working current About 70mA
Sleep current About 1.1mA

Table 5 provides the hardware specifications for
the LILYGO® TTGO T-Call V1.4 ESP32 module.
It features an ESPRESSIF-ESP32 240MHz Xtensa®
single-/dual-core 32-bit LX6 microprocessor. The
module includes 4MB of QSPI flash memory and
8MB of PSRAM, and 520 kB of SRAM. It has a
reset button and utilizes the CP2104 chip for USB to
TTL communication. The modular interface supports
protocols such as UART, SPI, SDIO, I2C, PWM,
TV PWM, I2S, and IRGPIO. The working voltage
ranges from 2.7V to 3.6V, with a working current
of approximately 70mA and a sleep current of about
1.1mA. These specifications highlight the module’s
versatility and suitability for various IoT applications.

3.1.2 SDS011 Particulate Matter Sensor

The SDS011 sensor measures air quality using laser
scattering to detect particles in the air, with a range of 0.3
to 10 micrometers, providing quick and accurate results.

Figure 3: SDS011 Particulate Matter Sensor is
utilized to measure air quality.

Figure 3 illustrates the SDS011 Particulate Matter
Sensor, which measures air quality using laser scattering
to detect particles in the air. The sensor has a detection
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range of 0.3 to 10 micrometers, providing quick and
accurate results. This capability makes it a valuable
tool for monitoring air quality and assessing particulate
matter concentrations in various environments.

3.1.3 DHT22 Temperature and Humidity
Sensor

The DHT22 sensor measures temperature and relative
humidity with high precision and low cost, making it
ideal for scientific data acquisition systems.

Figure 4: DHT22 Sensor, designed for measuring
temperature and relative humidity.

Figure 4 illustrates the DHT22 Temperature and
Humidity Sensor, which measures temperature and
relative humidity with high precision and low cost. This
makes it ideal for scientific data acquisition systems. The
DHT22 sensor is widely used in various applications
due to its accuracy and affordability, providing reliable
environmental monitoring and analysis data.

3.1.4 MiCS-6814 Air Quality Sensor

The MiCS-6814 sensor detects concentrations of various
gases (CO, NO2, NH3, among others) with independent
channels for each gas, making it suitable for precise
multi-gas detection.

Figure 5: MiCS-6814 Air Quality Sensor detects
concentrations of various gases including CO, NO2,
and NH3.

Figure 5 illustrates the MiCS-6814 Air Quality
Sensor, which detects concentrations of various gases,
including CO, NO2, and NH3, using independent
channels for each gas. This multi-gas detection
capability makes it suitable for precise air quality
monitoring, allowing for the accurate measurement of
different pollutants in the environment. The MiCS-6814

sensor is a versatile tool for comprehensive air quality
analysis in various applications.

3.1.5 Ublox Neo-6m Gy Neo6mv2 GPS Module

The GPS module monitored geographic coordinates
in real-time, ensuring precise location tracking. It
transmitted data to a server for processing, making it
available for visualization and interpretation. Integration
with Google Maps allowed users to view tracked
locations on an interactive map, enabling applications
like navigation, asset tracking, and environmental
monitoring. This real-time system enhanced spatial
data analysis, response to location-based events, and
informed decision-making based on accurate positioning
information.

3.1.6 GSM Network Module

The GSM 900 system utilizes 900 MHz frequencies for
data transmission, employing Time Division Multiple
Access (TDMA) and Frequency Division Multiple
Access (FDMA) technologies. These technologies
manage the allocation of frequencies and facilitate
efficient communication. TDMA divides each frequency
into time slots, allowing multiple users to share the
same frequency without interference. FDMA assigns
individual frequencies to different users, ensuring clear
and reliable communication channels. This combination
of technologies enables the GSM 900 system to support
robust and seamless communication in urban and rural
areas, providing extensive coverage and enhancing
connectivity.

3.2 Methods

The project starts with a use case that includes three
distinct blocks. The first stage analyzes human comfort
based on a review of scientific articles [14][47]. Then,
real data is collected for analysis, selecting relevant
environmental variables and preparing a dataset for
research [41].

Figure 6 illustrates the growth of the vehicle fleet
in Campinas, as recorded by the IBGE, from 2006
to 2022. The graph shows a steady vehicle increase,
from approximately 550,000 in 2006 to over 900,000 in
2022. This significant growth highlights the expanding
urban mobility and potential challenges related to traffic
congestion, air pollution, and infrastructure demands.
The data underscores the need for comprehensive urban
planning and environmental monitoring to address the
implications of this increasing vehicle density on human
comfort and urban sustainability.

The analysis of comfort in urban spaces is based on
previous studies on urban heat islands and other factors
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Figure 6: Growth of the Vehicle Fleet in Campinas
from 2006 to 2022, as recorded by IBGE.

influencing users’ psychological and physiological
satisfaction in public spaces [14][47][41]. Users
and stakeholders are identified through discussions,
interviews, and questionnaires, characterizing areas of
interest and concerns [15].

3.3 IoT Architecture System

Creating a quality environment for citizens is essential
in a smart city system. The proposed system monitors
environmental conditions in real-time, employing the
IoT Reference Model to develop a comprehensive
monitoring solution [7]. This architecture consists
of four layers: sensing, network, processing, and
application, as illustrated in Figure 7.

APPLICATION LAYER

PROCESSING LAYER

NETWORK LAYER

SENSING LAYER

Figure 7: IoT-based System Architecture, illustrating
the four key layers: Sensing Layer, Network Layer,
Processing Layer, and Application Layer.

The sensing layer collects data via sensors and
GPS during a person’s journey. It also handles
data preprocessing, including filtering and edge
computing. This functionality is implemented on the
Unit Measurement and Communication On-Board
(UMCO) hardware, specifically the ESP32 SIM Card

SIM800L. The hardware components used in this project
include:

• DHT-22 Sensor

• MICS-6814 Air Quality Sensor

• SDS011 Particulate Matter Sensor

• Ublox Neo-6m GPS Module

• LILYGO TTGO ESP32

Part of the UMCO hardware also supports the network
layer by providing data transmission via a mobile
network using GPRS/GSM. Standard communication
protocols for data transmission are encompassed within
this layer. In the processing layer, data management
activities such as storage, cleaning, filtering, and analysis
are conducted. This layer employs data preprocessing
techniques and machine learning algorithms, like
clustering, to identify patterns in the data generated
by the previous layers. The application layer focuses
on management and decision-making functions. Here,
algorithms utilize pre-processed data to provide relevant
information for specific applications. The proposed
model aims to establish a comprehensive real-time
environmental monitoring system. Key features of the
model include:

• Analyzing comfort levels by correlating air quality
and temperature data collected along the paths
traveled by individuals.

• Monitoring traffic conditions through the Google
Maps API.

Current IoT technologies are integrated to collect data,
transmit it to the cloud, analyze it, and produce useful
results.

STRING
ESP 32

INTERNET PUBLIC

BROKER MQTT

JSON

NODE-RED INFLUX DB

Figure 8: IoT System Operation Block Diagram,
depicting data flow from the ESP32 module through
a public MQTT broker to Node-RED and finally to
InfluxDB for storage.

Figure 8 presents the block diagram of the system
operation. Sensors connected to the ESP32 capture
environmental variables transmitted to the cloud via a
GSM module. Data is sent to a public broker (HiveMQ6)

6 https://www.hivemq.com/
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using the MQTT protocol, interfacing with NODE-RED.
The information, transmitted in JSON format, is stored
in an InfluxDB database.

3.3.1 ESP32

The ESP32 is the project’s central component,
seamlessly integrating sensor functionalities and
internet connectivity through its GSM module. Upon
initialization, the program calibrates the sensors to
ensure accurate data collection. It then establishes GSM
connections to enable reliable data transmission. The
ESP32 continuously retrieves sensor values, including
particulate matter measurements, temperature, humidity,
and various gases. This data is subsequently sent to
a public broker for cloud processing, where it can be
analyzed and visualized in real-time. By leveraging
the ESP32’s capabilities, the system ensures efficient
and continuous environmental monitoring, facilitating
informed decision-making and timely responses to
changing environmental conditions.

3.3.2 NODE-RED

NODE-RED7 is a graphical development tool that
utilizes flows to receive, process, and transmit data
efficiently. In this project, the ESP32 collects
environmental data from various sensors and sends this
data to a public broker using the MQTT protocol.
NODE-RED then accesses this data from the broker,
processes it, and stores it in a database. This
setup allows for seamless integration and real-time
data handling, enabling continuous monitoring and
analysis of environmental conditions. The graphical
interface of NODE-RED simplifies the development
and management of data flows, enhancing the system’s
overall efficiency and usability.

3.3.3 InfluxDB

InfluxDB8 stores time-series data, ensuring each data
point is synchronized with a timestamp. This allows
for precise tracking and analysis of temporal trends.
InfluxDB categorizes and stores sensor data in this
project into air quality, climatic temperature, spatial
location, and time. This organization facilitates efficient
data retrieval and evaluation, enabling comprehensive
monitoring and analysis of environmental conditions
across different dimensions.

7 https://nodered.org/
8 https://www.influxdata.com/

3.4 Decisions and Technological Choices

Several critical design choices were made when creating
the Internet of Things (IoT) system described in
this work to ensure its scalability, robustness, and
suitability for monitoring urban air quality. The system
integrates data storage, communication protocols, sensor
data gathering, and analytic tools to provide real-time
environmental insights. The selection of the GSM
module for reliable data transfer and the ESP32 micro-
controller for its flexible sensor integration capabilities
were pivotal in these decisions.

InfluxDB was chosen for time-series data storage
because it can rapidly handle large volumes of
timestamped sensor data, facilitating synchronized data
processing and retrieval. This design feature ensures
the system can efficiently monitor and assess various
environmental characteristics, including air quality
indices, meteorological conditions, and geographic
locations.

The materials and methods section outlines the
comprehensive approach used in this study. The system’s
central component is the ESP32, which integrates sensor
functionalities and internet connectivity via its GSM
module. The system employs various sensors to monitor
environmental parameters such as particulate matter
(PM10 and PM2.5), temperature, humidity, and gases
(CO, NO2, NH3). The data collected by these sensors is
transmitted using the MQTT protocol to a public broker,
where NODE-RED processes and routes it to InfluxDB.
This time-series database stores the data with precise
timestamps. The methodology involves calibrating the
sensors, establishing GSM connections, and employing
data analysis techniques such as Knowledge Discovery
in Data (KDD), Principal Component Analysis (PCA),
and the DBSCAN algorithm for clustering. This
integrated approach ensures real-time monitoring,
accurate data collection, and effective analysis to support
environmental assessment and decision-making.

4 RESULTS AND DISCUSSIONS

The collected data is initially analyzed to assess
particulate matter concentrations (PM10 and PM2.5),
temperature, humidity, and various gases (CO, NO2,
NH3). Statistical analyses and visualization techniques
are employed to identify patterns and anomalies within
the dataset. Furthermore, applying data mining
techniques, such as Principal Component Analysis
(PCA) and the DBSCAN clustering algorithm, reveals
significant insights into the spatial and temporal
variations in air quality. The discussion contextualizes
these findings within the broader framework of urban
environmental health, highlighting the implications for
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public health and urban planning. By comparing
the results with established air quality guidelines
and previous studies, this section underscores the
effectiveness of the proposed intelligent system in
providing real-time, actionable insights to mitigate
environmental risks and enhance urban sustainability.

4.1 Data Analysis

After implementing the data collection and monitoring
system, we conducted initial analyses to extract valuable
insights, aiming to identify behavioral patterns of
the primary variables. This process adhered to the
Knowledge Discovery in Data (KDD) methodology, a
well-established approach for leveraging raw datasets to
enable intelligent system learning and decision-making
[21].

The KDD process began with the selection stage,
where techniques such as histograms and calculating
key statistical measures were employed to understand
and manipulate the database thoroughly. The dataset
comprised 32,836 records, and Table 6 summarizes
the statistical measures for each variable. Notably,
the average particulate matter concentrations (PM10
and PM2.5) were 20.2516 µg/m³ and 11.8457 µg/m³,
respectively, within the regular Air Quality Guideline
(AQG) levels. However, these variables occasionally
exhibited extreme values, which pose potential health
threats according to AQG standards.

Table 6: Statistical Measures of the Dataset

Index CO NH3 NO2 Humid. Temp. P10 P2.5
Count 32836 32836 32836 32836 32836 32836 32836
Mean 4.385 0.683 0.719 53.972 23.374 20.252 11.846

Std. dev 0.009 0.038 2.423 17.797 4.657 13.284 8.111
Min 4.161 0.419 0.006 1.000 10.100 1.400 1.000
25% 4.385 0.670 -1.000 40.400 20.200 11.300 5.400
50% 4.385 0.680 0.140 51.900 22.700 16.900 9.200
75% 4.385 0.681 0.346 65.200 26.500 27.300 16.800
Max 6.011 1.946 103.525 99.900 52.800 261.100 78.800

Table 6 provides a comprehensive overview of the
statistical measures for the dataset, encompassing 32,836
records for various environmental parameters, including
CO, NH3, NO2, humidity, temperature, PM10, and
PM2.5. The mean values indicate average concentrations
and conditions, with CO at 4.385 ppm, NH3 at 0.683
ppm, and NO2 at 0.719 ppm. The dataset reveals a
mean humidity of 53.972% and the average temperature
of 23.374°C. The particulate matter concentrations
show average values of 20.252 µg/m³ for PM10 and
11.846 µg/m³ for PM2.5. Standard deviations indicate
variability, with NO2 showing the highest variability
(2.423 ppm) among the gases. The maximum recorded
values highlight potential extremes in the data, such as
261.100 µg/m³ for PM10 and 78.800 µg/m³ for PM2.5,

which could pose significant health risks. The dataset
captures various environmental conditions, providing
a solid foundation for analyzing air quality and its
implications on public health.

4.2 Detailed Analysis

This section aims to uncover the underlying patterns and
relationships within the data, offering a comprehensive
understanding of the environmental conditions. By
employing statistical and visual analysis techniques,
we can interpret the data’s behavior and variability,
essential for informed decision-making and effective
environmental management. The following subsections
provide a focused analysis of temperature, humidity,
particulate matter, and gaseous pollutants, highlighting
key findings and their implications.

4.2.1 Temperature and Humidity

Histograms were constructed for temperature and
humidity, as shown in Figure 9, revealing a normal
distribution and appropriate data dispersion. These
visualizations illustrate these variables’ potential ranges
and behaviors in the observed environment, providing
valuable insights into their variability and trends.

Figure 9: Histograms of Temperature and Humidity,
displaying the frequency distribution of temperature
and humidity readings.

Figure 9 presents histograms for temperature and
humidity, revealing a normal distribution and appropriate
data dispersion. These visualizations illustrate these
variables’ potential ranges and behaviors in the
observed environment, providing valuable insights into
their variability and trends. By analyzing these
histograms, we can understand the typical conditions
of temperature and humidity, which are crucial
for assessing environmental comfort and planning
appropriate interventions.

The temperature histogram shows a normal
distribution centered around 20 to 25 degrees Celsius,
indicating that most temperature readings fall within this
range, with a few observations extending to 50 degrees
Celsius. The humidity histogram also exhibits a normal
distribution, with most readings clustered between 40%
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and 80%, highlighting the prevalent humidity conditions
in the observed environment. These visualizations reveal
appropriate data dispersion and provide insights into
the typical ranges and variability of temperature and
humidity, essential for understanding the environmental
context and assessing comfort levels. The normal
distribution patterns suggest stable environmental
conditions, valuable for predicting and managing urban
climate and air quality.

4.2.2 Particulate Matter (PM10 and PM2.5)

The journey data, illustrated in Figure 10, highlights
PM10 and PM2.5 concentrations over a specific route,
demonstrating their impact on air quality. Geo-location
data was also used to map this behavior spatially,
providing a comprehensive view of how particulate
matter concentrations vary across different locations.

Figure 10: PM10 and PM2.5 Concentrations During
a Journey, (a) the PM2.5 concentration levels are
shown, and (b) the PM10 concentration levels are
displayed over time.

Figure 10 illustrates the concentrations of PM10 and
PM2.5 particulate matter during a specific journey, with
time on the x-axis and concentration levels on the y-axis.
Graph (a) shows the PM2.5 concentrations, while graph
(b) depicts the PM10 concentrations. Both graphs reveal
notable spikes in particulate matter levels at specific
times during the journey, particularly around 21:35:50
and 21:44:10, indicating periods of higher pollution
exposure. These spikes could be attributed to passing
through areas with increased emissions, such as busy
intersections or industrial zones. After these peaks, the
concentrations gradually decrease, suggesting a return
to areas with cleaner air. The data highlights the
variability of air quality encountered during travel and
underscores the importance of monitoring particulate

matter to identify pollution hotspots and assess exposure
risks.

4.2.3 PM10 Analysis

Analyzing the concentration of particulate matter PM10,
as illustrated in Figure 11, provides valuable insights
into the distribution and variability of PM10 levels
in the observed environment. The histogram reveals
the frequency of different PM10 concentration ranges,
helping to identify common and extreme values.
According to Table 6, the distribution of PM10
concentrations has a lower limit of 1.4 µg/m³, with
the first quartile at 11.3 µg/m³, indicating that 25% of
the observations fall below this value. The median
concentration is 16.9 µg/m³, meaning half of the
observations are below this level. The third quartile
is 27.3 µg/m³, showing that 75% of the data points
are below this concentration. The highest observed
regular concentration is the upper limit, 52.5 µg/m³.
Notably, the dataset includes a maximum outlier of 261.1
µg/m³, which indicates a significant pollution event or an
anomaly in the data collection process. These statistics
help understand the typical PM10 exposure levels
and the potential for extreme pollution events, which
are crucial for assessing air quality and formulating
environmental policies.

Figure 11: Histogram of PM10 Concentrations,
displaying the frequency distribution of PM10 values.

Figure 11 shows the mode of PM10 concentration at
14 (µg/m3), the most frequent value in the dataset. The
mean concentration is 20.25 (µg/m3) with a confidence
interval of ±13.284 (µg/m3). These values fall within
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the Acceptable Air Quality Guidelines (AQG) threshold,
indicating that the recorded PM10 levels do not pose
significant health risks to citizens.

4.2.4 PM2.5 Analysis

Figure 12 indicates that the most common PM2.5
concentration during data collection is 4 (µg/m3). The
average concentration is 11.84 (µg/m3) with a margin
of ±8.111 (µg/m3). These figures are within AQG
limits, indicating no significant health risks for the
population. Figure 12 illustrates a histogram of PM2.5
concentrations, visually representing the distribution and
frequency of PM2.5 values within the dataset. The
histogram reveals a skewed distribution, with most
PM2.5 concentrations clustered between 0 and 20
µg/m³. The highest frequency is observed around the
lower concentration levels, indicating that most recorded
PM2.5 values are relatively low. There are fewer
instances of higher PM2.5 concentrations, with a gradual
decline in frequency as the values increase, and only
a few observations exceed 40 µg/m³. This skewed
distribution suggests that while the average PM2.5 levels
are generally within a manageable range, occasional
spikes could pose significant health risks. These higher
values highlight the need for continuous monitoring and
targeted interventions to mitigate the impact of elevated
PM2.5 levels on public health.

Figure 12: Histogram of PM2.5 Concentrations with
the frequency distribution of PM2.5 values.

PM10 and PM2.5 particles are released from various
sources, including exhaust from factories, vehicles, and
road dust. These fine particles are significant pollutants
that pose health risks, especially when penetrating deep

into the respiratory system. The SDS011 sensor, a high-
precision device with a measurement range of 0.0-999.9
µg/m³, was employed to monitor these particulate matter
levels.

During the monitoring period, the sensor recorded
peak values of 261 µg/m³ for PM10 and 78.8 µg/m³
for PM2.5. Such high concentrations, although rarely
observed, indicate severe pollution episodes. These
peak values were specifically measured on the highway,
where vehicle emissions and road dust are predominant
sources of particulate matter. The spatial distribution
of these readings, as illustrated in Figure 13, highlights
the critical points along the highway where particulate
matter concentrations were exceptionally high.

These findings underscore the importance of
continuous air quality monitoring, especially in
high-traffic areas, to identify pollution hotspots and
implement effective mitigation strategies. The data
collected can inform policy decisions and contribute
to developing regulations to reduce emissions from
industrial and vehicular sources, ultimately protecting
public health and improving urban air quality.

Figure 13: Geographic Visualization of Maximum
PM10 Values, highlighting the locations with the
highest recorded PM10 concentrations.

Figure 13 provides a geographic visualization of
maximum PM10 values recorded in a specific urban
area. The map highlights various locations where
PM10 concentrations peaked, with color-coded markers
indicating the severity of the readings. One notable
point shows a maximum PM10 value of 261.1 µg/m³
recorded on August 17, 2021, at 11:30:51, significantly
exceeding typical safety thresholds and suggesting a
severe pollution event. This spatial representation
identifies pollution hotspots and helps understand the
spatial distribution of air quality issues. Such data is
crucial for urban planners and environmental authorities
to develop targeted strategies for pollution mitigation,
enhance air quality management, and protect public
health in the affected areas.
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4.3 Toxic Gases (NH3, CO, NO2)

Certain gases naturally occur in soil, air, and water.
Nitrogen exists in the atmosphere as gaseous N2, and
one way to produce ammonia is through nitrogen-fixing
microorganisms that capture atmospheric nitrogen and
convert it into ammonia. Another method involves the
bacterial conversion of nitrogenous compounds from
dead organisms or their waste into ammonia. Ammonia
is corrosive to the skin, eyes, and lungs, even at
low concentrations in the air. Exposure to anhydrous
ammonia can cause skin and eye burns, severe sore
throat, and coughing/wheezing.

Analyzing the concentration of ammonia (NH3) in
parts per million (ppm) provides valuable insights.
According to Figure 14, the most frequent concentration
(mode) is 0.678 ppm. The mean concentration is 0.683
ppm with a margin of ±0.038 ppm, which falls within
the interim target 1 and interim target 2 levels, indicating
minimal health risks for the population.

Figure 14: The Histogram of NH3 Concentrations
with the frequency of ammonia (NH3) values.

Carbon monoxide (CO) is a byproduct of burning
fuels like gas, oil, coal, and wood. It is also
produced naturally during chlorophyll synthesis, plant
decomposition, forest fires, and atmospheric methane
oxidation. Inhaled CO reduces the blood’s oxygen-
carrying capacity, leading to oxygen deprivation in
organs and tissues, causing cardiac and nervous system
issues, headaches, dizziness, and fatigue, affecting

humans and wildlife.

Figure 15: The Histogram of CO Concentrations
with the frequency of carbon monoxide (CO) values.

Figure 15 presents the data collection results, showing
a mode of 4.385 ppm and a mean of 4.385 ppm with
a ±0.009 ppm range. These values exceed Air Quality
Guideline (AQG) standards, posing significant health
risks to citizens.

Nitrogen dioxide (NO2) is produced through the
oxidation of atmospheric nitrogen, particularly at high
temperatures. Its primary source is the intense traffic on
major highways, which generates significant combustion
processes.

Figure 16: The Histogram of NO2 Concentrations
displays the frequency distribution of nitrogen
dioxide (NO2) values.
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In examining nitrogen dioxide (NO2) concentrations
measured in parts per million (ppm), Figure 16 reveals
a mode of 0.63 ppm and a mean of 0.7191 ppm, with
a range of ±2.283 ppm. These readings surpass Air
Quality Guidelines (AQG), indicating substantial health
hazards to citizens.

4.4 Humidex Index Analysis

To thoroughly analyze the Humidex Index, we apply
Formula 1, which integrates the collected temperature
and relative humidity data to calculate the index. This
formula allows us to quantify the combined effects
of heat and humidity on perceived temperature. The
resulting Humidex values measure thermal comfort,
which is crucial for assessing environmental conditions,
particularly during warm weather.

In Figure 17, the distribution of Humidex values is
visualized, revealing a mode of 13.5, indicating that this
value appears most frequently in our dataset. The mean
Humidex value is calculated at 14.91781, suggesting
that, on average, the perceived temperature is slightly
higher than the mode. The standard deviation, with a
range of ±3.19068, indicates the variability in the data,
reflecting fluctuations in the combined heat and humidity
levels.

Figure 17: Histogram of Humidex Index, illustrating
the frequency distribution of Humidex values. The
histogram shows a roughly normal distribution, with
most Humidex values clustered around the central
range of 25 to 35.

Referring to Table 4, we observe that the Humidex
values consistently remain below 29 throughout the

dataset. According to standard interpretation guidelines,
Humidex values under 29 are typically associated with a
comfortable thermal sensation, where most individuals
do not experience significant heat-related discomfort.
This observation suggests that the environmental
conditions during the data collection were generally
favorable, with little heat stress or discomfort risk.
The analysis underscores the importance of monitoring
the Humidex Index in various applications, including
weather forecasting, public health assessments, and
climate studies, to maintain thermal comfort and mitigate
potential heat-related hazards.

The analyses of key environmental variables indicated
that while average values mostly stayed within safe
levels, extreme values occasionally breached AQG
thresholds, potentially posing health risks. This
comprehensive data exploration sets the foundation
for developing predictive models and more refined
interventions to enhance urban air quality monitoring
and management.

4.5 Multivariable Analysis

To analyze variables with different units of
measurement, we standardize them using the formula:

Z =
Raw Score − Mean
Standard Deviation

Table 7 presents the variance-covariance matrix
concerning the principal components (PC). Each
eigenvalue represents the variance a principal component
explains. For instance, the eigenvalue for the first
principal component (PC1) is 2.165, indicating that it
accounts for 2.165 units of variance.

Table 7: Matrix Variance - Covariance

PC Eigenvalue % Variance
1 2.165 30.924
2 1.642 23.452
3 1.062 15.175
4 1.000 14.286
5 0.904 12.914
6 0.168 2.402
7 0.059 0.848

The “% variance” column indicates the percentage of
total variance explained by each principal component.
For example, PC1 explains 30.924% of the total
variance. This metric helps understand each
principal component’s importance in the overall
data structure. The first two principal components
explain approximately 54.376% of the total variance.
This highlights their significance in capturing the main
variability in the data. Table 8 and Figure 18 analyze
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axes 1 and 2, representing components 1 and 2. In PC1,
Humidex (0.543) and Temperature (0.534) are the most
significant variables critical for evaluating air quality
and influencing comfort in the study area.

Table 8: Loadings

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7
CO -0.002 0.0046 -0.0021 0.999 0.016 -0.007 -0.009
NH3 0.062 0.19 0.643 0.012 -0.739 0.033 -0.004
NO2 -0.063 0.063 0.746 -0.009 0.66 -0.004 -0.004
P 10 0.451 0.526 -0.104 -0.003 0.114 0.697 -0.103
P 2.5 0.455 0.528 -0.076 -0.003 0.076 -0.699 0.117
Temp. 0.534 -0.455 0.086 0.004 0.003 0.112 0.697
Humidex 0.543 -0.445 0.08 0.003 -0.001 -0.108 -0.67

Humidex, a composite index that combines
temperature and relative humidity, is a crucial indicator
of thermal comfort and plays a significant role in
assessing the environmental conditions that impact
human well-being. By factoring in temperature and
humidity, the Humidex provides a more comprehensive
measure of perceived heat, particularly in regions where
high humidity can exacerbate the effects of warm
temperatures. A higher Humidex value corresponds to
a stronger sensation of heat, which can significantly
influence an individual’s comfort levels, potentially
leading to discomfort, decreased productivity, and even
health risks such as heat exhaustion or heatstroke.

Figure 18: Loadings of Each Variable for Principal
Component 1 (PC1), illustrating the contribution of
each variable to PC1. The bar chart shows that
temperature and Humidex have the highest loadings,
indicating they are the most influential variables in
explaining the variance captured by PC1.

In the context of the study area, both Humidex and
temperature are closely intertwined with the quality
of life. These indicators reflect the environmental
conditions that the local population experiences daily.
High Humidex values can diminish the quality of life
by creating oppressive heat conditions that limit outdoor
activities, reduce work capacity, and increase the need
for cooling measures, affecting both physical and mental

well-being. On the other hand, maintaining moderate
temperature levels contributes to a more favorable
living environment, enhancing comfort, productivity,
and overall satisfaction with daily life.

Thus, the interplay between Humidex and temperature
is not merely a matter of meteorological interest but
a critical factor in public health, urban planning, and
community well-being. Understanding and managing
these variables can lead to better-informed decisions that
improve living conditions, mitigate the adverse effects
of extreme weather, and ultimately enhance the quality
of life for the population in the study area.

4.6 Clustering and Data Decomposition
Analysis

To apply the DBSCAN algorithm, it is crucial first
to determine the values of epsilon and min samples
for clustering. Given the number of records, we
decided to automate the search for these values using
the KneeLocator function from the kneed library.
Additionally, we defined a simple function to set
min samples based on the dataset size.

The automated process yielded the following results:

• Automatically determined epsilon value:
0.0021286850401138644

• Automatically determined min samples value: 10

With the above parameters, we obtained 26 clusters,
ranging from cluster 0 to cluster 25. We will analyze
clusters 0, 13, and 25.

4.6.1 Cluster 0 Analysis

The analysis of Cluster 0 begins with a focus on the
loadings of variables within Cluster 0, as shown in
Table 9. These loadings indicate the variables’ influence
on each principal component, offering insights into the
data’s structure and highlighting the most significant
variables contributing to the cluster’s formation.

Table 9: Loadings of Cluster 0

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7
CO -0.002 0.007 -0.06 0.99 -0.009 -0.006 -0.009
NH3 0.088 0.24 0.498 0.036 0.828 0.04 0.005
NO2 -0.073 0.123 0.833 0.044 -0.531 -0.001 0.001
P 10 0.559 0.401 -0.103 -0.009 -0.146 0.693 0.118
P 2.5 0.571 0.394 -0.076 -0.007 -0.098 -0.698 -0.13
Temp. 0.416 -0.56 0.144 0.014 0.029 0.134 -0.688
Humidex 0.42 -0.545 0.131 0.012 0.036 -0.114 0.704

In PC1, variables such as “P 2.5” and “P 10” exhibit
high loadings, indicating their significant contributions
to the variability captured by PC1. This is visualized in
Figure 19.
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Figure 19: Loadings of Each Variable for Principal
Component 1 (PC1) for Cluster 0, highlighting the
influence of each variable within this specific cluster.
The bar chart reveals that PM10 variations and
PM2.5 have the highest loadings, indicating they
are the most significant contributors to the variance
captured by PC1 in Cluster 0.

These findings highlight the complex interplay of
environmental factors shaping air quality dynamics
within Cluster 0. Recommendations address
the identified health risks associated with high
concentrations of pollutants, emphasizing the need
for stringent regulatory measures and increased public
awareness. Implementing these measures can help
mitigate the adverse health effects and improve air
quality.

4.6.2 Cluster 13 Analysis

The PCA results in Table 10 offer key insights into
the data structure of Cluster 13. Although the analysis
spanned 26 clusters, our focus on Cluster 13 emphasizes
the variables most significantly influencing its data.
PM10, with an absolute loading of -0.549, emerged
as the most influential variable on PC1, indicating its
substantial contribution to the variability within this
cluster. Other variables, such as PM2.5 and NO2,
also displayed significant loadings on PC1, underscoring
their role in explaining the variance in Cluster 13.

Table 10: Loadings of Cluster 13

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7
CO -0.00 -0.00 0.00 -0.00 -0.00 -0.00 1.0
NH3 0.138 0.004 -0.99 -0.01 -0.033 0.06 0.0
NO2 -0.497 0.218 -0.055 -0.832 -0.094 0.037 0.00
P 10 -0.549 0.187 -0.057 0.457 -0.672 0.015 0.0
P 2.5 -0.545 0.231 -0.098 0.313 0.732 0.074 0.0
Temp. -0.217 -0.682 0.01 -0.017 -0.01 0.7 0.0
Humidex -0.32 -0.632 -0.09 -0.019 0.046 -0.71 0.0

Figure 20 visually depicts the variable loadings for
Principal Component 1 (PC1) within Cluster 13. This

plot clearly illustrates each variable’s contribution to
PC1, simplifying the interpretation of the PCA results.
By identifying the variables that most influence the
variance captured by PC1, the visualization provides
deeper insights into the underlying structure of the data.

Figure 20: Loadings of Each Variable for Principal
Component 1 (PC1) for Cluster 13 illustrate the
contribution of each variable within this specific
cluster.

The recorded concentrations of PM10 and PM2.5 in
Cluster 13 were within the moderate range, indicating
potential health risks. To protect public health, it is
essential to implement measures to reduce particulate
matter exposure. Continuous air quality monitoring and
pollution control are also crucial, as weather conditions
significantly impact pollutant dispersion.

In conclusion, tackling air pollution and promoting
sustainable practices are vital to safeguarding public
health and improving environmental quality in Cluster
13. Implementing pollution control measures and
sustainable urban development policies will help
mitigate adverse health effects and ensure the local
population’s well-being.

4.6.3 Cluster 25 Analysis

Table 11 shows the loadings of variables on PC1 and
PC2, with P10 and Humidex being the most significant
contributors. P10 has the highest loading on PC1,
strongly influencing this component, while Humidex has
a substantial loading on PC2, indicating its impact on
the second component. These results emphasize the
importance of P10 and Humidex in the overall variance
structure captured by the first two principal components.
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Table 11: Loadings of Cluster 25

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7
CO -0.00 -0.00 0.00 -0.00 -0.00 -0.00 1.0
NH3 0.499 0.031 -0.295 -0.633 0.382 -0.341 0.000
NO2 0.202 -0.405 0.776 -0.387 -0.189 0.094 0.000
P 10 -0.549 0.056 -0.046 -0.361 -0.454 -0.598 0.000
P 2.5 -0.519 -0.166 -0.213 -0.496 0.239 0.595 0.000
Temp. -0.290 0.541 0.514 -0.008 0.578 -0.157 0.000
Humidex 0.235 0.715 0.017 -0.273 -0.470 0.371 0.000

Figure 21 visually represents the variable loadings
for the first principal component, PC1. The figure
demonstrates the substantial influence of P10 on this
component, with P10 exhibiting the highest loading
among all the variables analyzed. This high loading
indicates that P10 is a key factor driving the variance
captured by PC1, highlighting its critical role in
shaping the underlying data structure associated with this
principal component.

Figure 21: Loadings of Each Variable for Principal
Component 1 (PC1) for Cluster 25, displaying
the influence of each variable within this cluster.
The bar chart reveals that CO and NH3 have
significant positive loadings, indicating a strong
positive contribution to PC1.

Regarding health implications, the high loading of
PM10 on PC1 suggests significant contributions to
variability, which is associated with respiratory and
cardiovascular risks. Similarly, the high loading of
Humidex on PC2 indicates potential discomfort and
heat stress, affecting overall well-being. These findings
underscore the importance of addressing particulate
matter pollution and thermal comfort to mitigate adverse
health effects in Cluster 13.

The maximum values of humidity (21.5), temperature
(20°C), PM10 (19.1 µg/m³), and PM2.5 (5.8 µg/m³) in
Cluster 25 reveal important insights. The humidity level

is within the “Mild discomfort” range on the Humidex
scale (Table 4), while the temperature is considered
comfortable. However, the PM10 and PM2.5 levels
exceed the World Health Organization’s interim targets,
indicating potential health risks.

Although the concentrations of PM10 and PM2.5 in
Cluster 25 are below the interim targets set by the World
Health Organization (WHO) for air quality standards
(Table 3), they still pose potential health risks. The
interim target for PM10 is 150 µg/m³, and the observed
value is 19.1 µg/m³. PM2.5’s target is 75 µg/m³, while
the recorded level is 5.8 µg/m³.

High levels of particulate matter like PM10 and
PM2.5 can adversely affect health, as they can penetrate
deeply into the respiratory system, leading to respiratory
and cardiovascular diseases and exacerbating conditions
such as asthma and bronchitis.

To address these health risks, it is crucial to implement
measures to reduce air pollution. This includes
promoting cleaner energy sources, enhancing emission
controls, adopting stricter vehicle emission standards,
and encouraging sustainable urban planning. Public
health initiatives are also essential, such as raising
awareness about air quality and encouraging personal
protective measures during periods of poor air quality.

In summary, the elevated PM10 and PM2.5 levels in
Cluster 25 highlight the need for effective air quality
management strategies. By addressing air pollution and
promoting sustainable practices, we can create healthier
and more livable environments for the residents of
Cluster 25 and beyond.

Clusters 0, 13, and 25 analysis reveals differences in
air pollution levels and related health risks. Clusters 0
and 13 show moderate pollution, whereas Cluster 25 has
significantly higher particulate matter concentrations,
posing serious health concerns. Improving air quality
involves regulatory measures, public education, and
community involvement.

To safeguard public health, it is crucial to prioritize air
quality management and implement interventions
recommended by organizations like the WHO.
Collaborative efforts across various sectors and
levels—local, national, and international—are necessary
to create healthier environments and ensure the well-
being of future generations.

4.7 Comparative Analysis

Our review of existing research identified several
Internet of Things (IoT)-based systems designed to
monitor urban air quality. These studies emphasize
sensor deployment strategies, data collection
approaches, and analysis methodologies. However, our
work stands out through the comprehensive integration
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of Node-RED for efficient data flow visualization
and analysis alongside InfluxDB for real-time data
management.

Our methodology differentiates itself by not merely
focusing on individual components or specific types of
sensors. Instead, we integrate multiple technological
elements into a cohesive IoT architecture tailored
to monitor urban environments. This integration
significantly enhances data accuracy and system
dependability. Moreover, our system facilitates
advanced analytical methods, such as Knowledge
Discovery in Databases (KDD), enabling sophisticated
pattern recognition and anomaly detection.

Our results underscore the system’s robustness in
handling diverse environmental variables. For instance,
the SDS011 sensor recorded peak PM10 and PM2.5
values of 261 µg/m³ and 78.8 µg/m³, respectively,
highlighting its sensitivity and accuracy in capturing
critical pollution levels. Using clustering algorithms like
DBSCAN further refined our analysis, identifying high-
pollution areas that require targeted interventions.

We achieved a more precise air quality assessment
by deploying sensors in strategic locations, such
as highways and industrial neighborhoods, aligning
with studies emphasizing location’s significance in
environmental monitoring. However, our integration
of real-time data processing and advanced visualization
tools provides a more dynamic and responsive approach
than the more static methods observed in other research.

Our work contributes to the field by demonstrating a
scalable, reliable, and comprehensive IoT-based system
that can enhance urban air quality monitoring and
management, offering actionable insights for urban
planners and public health officials.

4.8 Practical Implications

Deployment in various locations, including vehicles and
public spaces, enhances the adaptability of this system,
enabling real-time monitoring of climate and air quality
in places frequented by large numbers of people, such as
restaurants and sporting events. This capability is crucial
for safeguarding public health by promptly identifying
environmental factors that could impact participants’
well-being.

By leveraging this mobile dataset, our approach
expands environmental monitoring beyond fixed
locations, significantly advancing over traditional
stationary systems. This methodology enhances the
granularity and coverage of data collection and facilitates
flexible decision-making for health authorities, urban
planners, and event organizers. It provides stakeholders
with actionable insights to mitigate health risks
associated with fluctuating environmental conditions in

densely populated areas.
Furthermore, our system’s capability to proactively

manage environmental quality in dynamic urban settings
is underscored by its advanced data analytics, including
real-time anomaly detection and predictive modeling.
These capabilities contribute to the discourse on
smart cities and sustainable urban development by
emphasizing the importance of data-driven strategies in
enhancing environmental resilience and public health
outcomes.

5 CONCLUSION

This research provides critical insights into modern
cities’ environmental and climate challenges, focusing
on the smart city concept aimed at enhancing urban
quality of life. It emphasizes the development
of an intelligent system for real-time environmental
monitoring, which is crucial for informed decision-
making regarding urban environmental safety.

The study explores various aspects of environmental
comfort, specifically creating a toxic gas monitoring
system using Arduino and integrated sensors. It
addresses key research questions about the factors
influencing environmental comfort and the existing
technological solutions to foster a safe, clean,
and healthy urban environment within smart city
frameworks.

To achieve these objectives, the research methodology
includes hardware implementation for data collection
and establishing an IoT system architecture, enabling
comprehensive data analysis. Techniques such as
Knowledge Discovery in Data (KDD), univariate and
multivariate analyses, and algorithms like DBSCAN are
employed to provide a detailed understanding of air
quality and its public health implications.

Moreover, key findings highlight the significance
of Humidex, temperature, and particulate matter
concentrations in evaluating environmental comfort
and air quality. Clustering and data decomposition
analyses reveal areas with varying pollution levels
and associated health risks, emphasizing the need for
targeted interventions to safeguard residents’ health.

Furthermore, the study recommends integrating the
IoT architecture into central smart city monitoring
systems to improve real-time data accuracy and
enhance responses to air quality warnings. Given
that increased vehicle numbers are a primary pollution
source, deploying the dataset in strategic locations
such as industrial neighborhoods and main avenues
is suggested. This approach would enable precise
air quality assessments and identification of health-
impacting factors. Encouraging drivers to use devices
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that record real-time data can help maintain an up-to-date
and comprehensive database.

In conclusion, this research underscores the urgency
of managing air quality and implementing evidence-
based interventions recommended by global health
organizations like the WHO. Collaboration among
stakeholders at various levels is essential to create
healthier and more sustainable urban environments for
current and future generations.

Building on the findings of this research, future work
could focus on enhancing the IoT system’s capabilities
by integrating machine learning algorithms for predictive
analytics and real-time response automation. This
includes developing advanced models to accurately
forecast air quality trends and identify potential pollution
sources.

Additionally, expanding the network of sensors to
cover more diverse geographic areas, including rural and
suburban regions, would provide a more comprehensive
understanding of air quality dynamics. Future studies
could also explore the impact of different urban
planning strategies on environmental comfort and health
outcomes.

Engaging in cross-disciplinary collaborations
with urban planners, public health officials, and
policymakers will be essential to design effective
interventions and policies that promote sustainable
urban development. Finally, investigating the social
and economic implications of implementing these smart
city technologies could offer valuable insights into
optimizing resource allocation and maximizing public
benefit.
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J. Tornero, “Ciudad y confort ambiental: estado de
la cuestión y aportaciones recientes,” 2006.

[41] I. A. Raja and G. S. Virk, “Thermal comfort in
urban open spaces: a review,” Proceedings of
moving thermal comfort standards into the 21st
century, pp. 342–52, 2001.

[42] S. Russo, A. Dosio, R. G. Graversen, J. Sillmann,
H. Carrao, M. B. Dunbar, A. Singleton,
P. Montagna, P. Barbola, and J. V. Vogt,
“Magnitude of extreme heat waves in present
climate and their projection in a warming world,”
Journal of Geophysical Research: Atmospheres,
vol. 119, no. 22, pp. 12–500, 2014.

[43] J. H. Seinfeld, S. N. Pandis, and K. Noone,
“Atmospheric chemistry and physics: from air
pollution to climate change,” Physics Today,
vol. 51, p. 88, 1998.

[44] M. Stoimenova-Minova, S. Gocheva-Ilieva, and
A. Ivanov, “Pm10 prediction using cart method
depending on the number of observations,”
in Proceedings of the 2020 3rd International
Conference on Mathematics and Statistics, 2020,
pp. 65–70.

[45] M. Tayab, W. Zhou, M. Zhao, and S. Li, “Big data
and public services for environmental monitoring
system,” in 2016 11th International Conference on
Computer Science & Education (ICCSE). IEEE,
2016, pp. 139–143.

[46] G. V. Ulate, “Espacio y territorio en el análisis
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